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Abstract

We consider the problem of redundancies in distributed computing where a master server wishes to compute
some tasks and is provided a few child servers to compute. We consider a noisy environment where some child
servers may fail to communicate their results to the master. We attempt to distribute tasks to the servers so that
master is able to get the results for most of the tasks even if a few servers fail to communicate. We formulate
some conditions on the distribution such that the number of tasks received is the maximum and also show that
constructions using "Balanced Incomplete Block Design" [1] attains this optimality.

I. PRELIMINARIES

We consider a setup where a master has n jobs to compute and has c servers to do the computations.
We further assume a noisy scenario where only a fraction of these servers are able to communicate with
the master. Therefore, we need to introduce redundancies in the setup by assigning each job to multiple
servers. In our study, we examine the expectation and variance on the number of distinct completed jobs
that the master receives from the servers that were able to communicate, and in particular, we study
assignment schemes that achieve the desired variances on the number of received distinct jobs.

II. NOTATIONS AND SYMBOLS

Given a set of n jobs and c servers, we would like to study various assignments of jobs to different
servers by the master server. More formally, let us denote the n jobs by A = {a1, . . . , an} and c servers
by S = {s1, s2, . . . , sc}. Any assignment (D) of jobs in A to servers in S, can be equivalently represented
by a bipartite graph GD where the nodes denote the jobs and the servers while edges exist between nodes
denoting job ai and server sj if job ai is assigned to server sj . Alternately, for a job assignment D, we
can define an assignment matrix AD ∈ {0, 1}n×c as given below.

Definition 1. (Construction of AD): Given an assignment of jobs in A to servers in S, we define matrix
AD ∈ {0, 1}n×c as follows. :

AD[i, j] = 1 if job ai is assigned to server sj

= 0 otherwise (1)

Observe that the matrix AD represents the adjacency graph matrix for the bipartite graph GD.
We now specifically study balanced assignment schemes where each server is assigned the same number

of jobs and each job is assigned to the same number of servers. More formally, we define it as follows.

Definition 2. (Balanced (n, k, r, c) assignment): Given a set of n jobs and c servers, we call an assignment
scheme of jobs a balanced (n, k, r, c) assignment if the following conditions are satisfied.

• Each server is assigned precisely k distinct jobs to compute.
• Each job is assigned to precisely r distinct servers.

Note that this assignment scheme ensures that n× r = k × c.

We can equivalently define it in terms of matrix AD as follows.
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Definition. (Balanced (n, k, r, c) assignment in terms of AD): Given a set of n jobs and c servers, we call
the assignment scheme D of jobs to servers a balanced (n, k, r, c) assignment if each row of AD sums
up to r and each column sums up to k.

Let us now describe an example of a balanced (9, 3, 2, 6) assignment scheme.

Example 1. We describe a balanced assignment scheme with 9 jobs {a1, a2, . . . , a9} and 6 servers
{s1, s2, . . . , s6} in Table 1. Note that each job is assigned to precisely 2 servers and each server has
exactly 3 jobs to compute. The assignment scheme is motivated from a cyclic assignment scheme

Jobs s1 s2 s3 s4 s5 s6
a1 1 1
a2 1 1
a3 1 1
a4 1 1
a5 1 1
a6 1 1
a7 1 1
a8 1 1
a9 1 1

TABLE 1
ASSIGNMENT OF JOBS TO VARIOUS SERVERS IN A BALANCED (9, 3, 2, 6) ASSIGNMENT SCHEME

III. THE MEAN AND THE VARIANCE

We consider the number of distinct jobs d received at the master when only a subset of x servers
manage to communicate with the master. We consider any subset of S with cardinality x to be equally
likely be the set of servers that communicates with the master. Note that with this definition, if Ŝ ⊂ S
(with |Ŝ| = x) is the subset of servers that communicate with the master, then we can denote the number
of distinct jobs received d = | ∪j∈Ŝ supp(AD[:, j])| where supp(v) denotes the indices of the non-zero
entries of the vector v.

Now, consider the uniform distribution over all subsets of servers of cardinality x which we denote by
DS,x i.e. a sample from this distribution returns any subset of S of cardinality x with probability 1

(|S|
x )

.

For a given assignment D of jobs to servers, we denote the expectation in the number of distinct
completed jobs received by the master when any set of x servers is able to communicate with master
uniformly at random by ED,x[d] and the corresponding variance by σD,x[d]. The expectation and the
variance on the number of distinct received jobs d may be written as

ED,x[d] = EŜ∼DS,x

∣∣∣∣∣∣
⋃
j∈Ŝ

supp(AD[:, j])

∣∣∣∣∣∣
 and σD,x[d] = σŜ∼DS,x

∣∣∣∣∣∣
⋃
j∈Ŝ

supp(AD[:, j])

∣∣∣∣∣∣
 (2)

Note that the randomness in this setup is only in the set of servers that can communicate with the
master. The assignment scheme has no randomness associated with it.

Theorem 6 states that the expectation on the number of distinct jobs ED,x[d] is the same for every
balanced (n, k, r, c) assignment. This expectation is a function of n, k, r and c and is independent of the
specific balanced assignment D we choose.

Theorem 1. Consider any balanced (n, k, r, c) assignment D. The expectation of the number of distinct
completed jobs d received by the master when any subset of servers S of cardinality x is able to
communicate with the master with equal probability is the same for every assignment D amongst all
balanced (n, k, r, c) assignments and is given by
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ED,x[d] = n.

(
1−

(
c−r
x

)(
c
x

) ) (3)

Proof. We denote by nD
i,Ŝ

the number of servers in Ŝ to which job ai is assigned under the assignment
scheme D. Observe that nD

i,Ŝ
can take any value from 0 to r.

Now, the number of distinct jobs d received by the master when servers in a subset Ŝ (with |Ŝ| = x)
is able to communicate with the master is given by

d =

∣∣∣∣∣∣
⋃
j∈Ŝ

supp(AD[:, j])

∣∣∣∣∣∣ =
(
k × x−

n∑
i=1

(nD
i,Ŝ

− 1)1nD
i,Ŝ

>1

)
(4)

Note that the term
n∑

i=1

(nD
i,Ŝ

− 1)1nD
i,Ŝ

>1 excludes those jobs which have been received multiple times

from various servers present in Ŝ.

ED,x[d] =

∑
Ŝ⊂S;
|Ŝ|=x

(k × x−
n∑

i=1

(nD
i,Ŝ

− 1)1nDi,S>1)

∑
Ŝ⊂S;
|Ŝ|=x

1

=k × x−

n∑
i=1

∑
Ŝ⊂S;
|Ŝ|=x

(nD
i,Ŝ

− 1)1nD
i,Ŝ

>1

(
c
x

)

=k × x−

n
∑
Ŝ⊂S;
|Ŝ|=x

(nD
i,Ŝ

− 1)1nD
i,Ŝ

>1

(
c
x

) (5)

Observe that for every job ai in a balanced (n, k, r, c) assignment,
∑

Ŝ⊂S,|Ŝ|=x

(nD
i,Ŝ

− 1)1nD
i,Ŝ

>1 is the

same, i.e., this summation is independent of i. Now we show
∑

Ŝ⊂S,|Ŝ|=x

(nD
i,Ŝ

− 1)1nD
i,Ŝ

>1 is same for every

balanced (n, k, r, c) distribution D for any specified x. We compute this sum by counting the number of
subsets Ŝ ⊂ S of cardinality x which additionally satisfies the constraint on nD

i,Ŝ
= t (i.e. job ai is present

in exactly t servers from Ŝ) for every t from 2 to r (as these cases deal with the job ai appearing more
than once in the subset Ŝ).
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∑
Ŝ⊂S;
|Ŝ|=x

(nD
i,Ŝ

− 1)1nD
i,Ŝ

>1=
r−1∑
t=1

∑
Ŝ⊂S;

|Ŝ|=x,nD
i,Ŝ

=t+1

t

=
r−1∑
t=1

t
∑
Ŝ⊂S;

|Ŝ|=x,nD
i,Ŝ

=t+1

1

(a)
=

r−1∑
t=1

t

(
r

(t+ 1)

)(
(c− r)

(x− t− 1)

)
(6)

The last equality (a) comes from counting the number of subsets Ŝ ⊂ S of cardinality x that contain
precisely t+ 1 servers assigned the job ai. Consider the following binomial expressions

ry(1 + y)r−1 + 1− (1 + y)r =
r−1∑
t=0

t

(
r

t+ 1

)
yt+1 (7)

(1 + y)c−r =
c−r∑
u=0

(
c− r

u

)
yu (8)

Multiplying equations (7) and (8), we can show that
r−1∑
t=1

t
(

r
(t+1)

)(
(c−r)

(x−t−1)

)
is precisely the coefficient of

yx in ry(1 + y)c−1 + (1 + y)c−r − (1 + y)c. Thus,

r−1∑
t=1

t

(
r

(t+ 1)

)(
(c− r)

(x− t− 1)

)
= r ×

(
c− 1

x− 1

)
+

(
c− r

x

)
−
(
c

x

)
(9)

Combining equations (5), (6) and (9), we get

ED,x[d] = k × x−
n
(
r ×

(
c−1
x−1

)
+
(
c−r
x

)
−
(
c
x

))(
c
x

) = n

(
1−

(
c−r
x

)(
c
x

) )
■

A few comments are in order here. Note that for x = 1, the expectation (as expected) is precisely
k. Observe that for x > c − r, the expectation goes to n. In other words, if the number of servers that
successfully communicates with the master is greater than (c − r), then the master obtains at least one
copy of every job ai ∈ A. This follows since every job is assigned to exactly r servers and therefore for
any job to be missed out, the r servers to which that specific job was assigned, should fail to communicate
with the master. Thus, if any job is missed out, then the number of servers that manage to communicate
with the master x can at most be c− r.

We now calculate the variance for the number of distinct jobs d received at the master for any balanced
(n, k, r, c) job assignment D. From the comments in the previous paragraph, it is clear that σD,1[d] = 0
for the case x = 1, since the master always receives precisely k distinct jobs, if only one server manages
to communicate with the master. Similarly, σD,x[d] = 0 for x > c− r, as the master would receive all the
n jobs if more than c− r servers communicate as we show in Corollary 1.

For calculating the variance on the number of distinct jobs d received by the master, observe

σD,x(d) = σD,x(k × x−
∑
i

(nD
i,Ŝ

− 1)1nD
i,Ŝ

>1) = σD,x

(∑
i

(nD
i,Ŝ

− 1)1nD
i,Ŝ

>1

)
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The above follows since σ(c −X) = σ(X) where c is a constant and X is a random variable. We now
make use of the definition var(X) = E[X2]− (E[X])2. Therefore,

σD,x(d) = σD,x

(∑
i

(nD
i,Ŝ

− 1)1nD
i,Ŝ

>1

)

=

∑
Ŝ⊂S;
|Ŝ|=x

(
n∑

i=1

(nD
i,Ŝ

− 1)1nD
i,Ŝ

>1

)2

∑
Ŝ⊂S;
|Ŝ|=x

1
−


∑

Ŝ⊂S;|Ŝ|=x

(
n∑

i=1

(nD
i,Ŝ

− 1)1nD
i,Ŝ

>1)∑
Ŝ⊂S;
|Ŝ|=x

1


2

(a)
=

∑
Ŝ⊂S;
|Ŝ|=x

(
n∑

i=1

n∑
j=1

(nD
i,Ŝ

− 1)1nD
i,Ŝ

>1(n
D
j,Ŝ

− 1)1nD
j,Ŝ

>1)

∑
Ŝ⊂S;
|Ŝ|=x

1
−



n∑
i=1

∑
Ŝ⊂S;
|Ŝ|=x

((nD
i,Ŝ

− 1)1nD
i,Ŝ

>1)

(
c
x

)


2

(b)
=

n∑
i=1

n∑
j=1

∑
Ŝ⊂S;
|Ŝ|=x

(nD
i,Ŝ

− 1)1nD
i,Ŝ

>1(n
D
j,Ŝ

− 1)1nD
j,Ŝ

>1

(
c
x

) −

n
r−1∑
t=1

t
(

r
(t+1)

)(
(c−r)

(x−t−1)

)
(
c
x

)


2

(c)
=

n∑
i=1

n∑
j=1

∑
Ŝ⊂S;
|Ŝ|=x

(nD
i,Ŝ

− 1)1nD
i,Ŝ

>1(n
D
j,Ŝ

− 1)1nD
j,Ŝ

>1

(
c
x

) −

(
n
(
c−r
x

)(
c
x

) + n×
(rx
c

− 1
))2

(10)

In the above set of equations, (a) follows from the identity (
∑
i

bi)
2 =

∑
i

∑
j

bibj . The first term in (b)

is obtained by interchanging the order of summations, whereas the second term comes from equation (6).
Further, the second term in (c) follows using the equation (9) in the proof of Theorem 6.

Observe that the second term in the final expression in equation (10) depends only on n, r, c and x and
is independent of the specific balanced (n, k, r, c) job assignment D. On the other hand, the first term in
equation (10) depends on the particular assignment D. We now consider the numerator of the first term
of equation (10) in more detail. We can break this expression into two parts, where one part is dependent
on just one index i and the other part is dependent on two distinct indices i, j. Thus,

n∑
i=1

n∑
j=1

∑
Ŝ⊂S;
|Ŝ|=x

(nD
i,Ŝ

− 1)1nD
i,Ŝ

>1(n
D
j,Ŝ

− 1)1nD
j,Ŝ

>1

=2
∑

1≤i<j≤n

∑
Ŝ⊂S;
|Ŝ|=x

(nD
i,Ŝ

− 1)1nD
i,Ŝ

>1(n
D
j,Ŝ

− 1)1nD
j,Ŝ

>1+
∑

1≤i=j≤n

∑
Ŝ⊂S;
|Ŝ|=x

(nD
i,Ŝ

− 1)1nD
i,Ŝ

>1(n
D
j,Ŝ

− 1)1nD
j,Ŝ

>1 (11)

In equation (11), the second term can be rewritten as
∑

1≤i≤n

∑
Ŝ⊂S;
|Ŝ|=x

((nD
i,Ŝ

− 1)1nD
i,Ŝ

>1)
2. For every job ai, this

expression calculates
∑
Ŝ⊂S;
|Ŝ|=x

((nD
i,Ŝ

− 1)1nD
i,Ŝ

>1)
2, which is independent of the choice of the job ai in any
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balanced (n, k, r, c) assignment D. In fact, this second term of equation (11) is independent of the choice
of D and it depends only on the values of c, r and x. We can compute this sum by counting the number
of subsets Ŝ ⊂ S of cardinality x that additionally satisfy the constraint nD

i,Ŝ
= t (i.e. job ai is present in

exactly t servers from Ŝ) for every t from 2 to r. Thus∑
1≤i≤n

∑
Ŝ⊂S;
|Ŝ|=x

((nD
i,Ŝ

− 1)1nD
i,Ŝ

>1)
2 = n

r−1∑
t=1

t2
(

r

(t+ 1)

)(
(c− r)

(x− t− 1)

)
(12)

Note that the number of subsets Ŝ ⊂ S of cardinality x such that a particular job ai appears t+1 times in
Ŝ is given by

(
r

(t+1)

)(
(c−r)

(x−t−1)

)
. As nD

i,Ŝ
= t+1 for this particular Ŝ, therefore ((nD

i,Ŝ
−1)1nD

i,Ŝ
>1)

2 = t2. This

explains the final expression in equation (12). A closed form expression for the sum
r−1∑
t=1

t2
(

r
(t+1)

)(
(c−r)

(x−t−1)

)
can be obtained by considering the following binomial expressions

r(r − 1)y2(1 + y)r−2 − ry(1 + y)r−1 − 1 + (1 + y)r =
r−1∑
t=1

t2
(

r

t+ 1

)
yt+1 (13)

(1 + y)c−r =
c−r∑
v=0

(
c− r

v

)
yv (14)

Multiplying equations (13) and (14), one obtains
r−1∑
t=1

t2
(

r
t+1

)(
c−r

x−t−1

)
to be the coefficient of yx in r(r−

1)y2(1 + y)c−2 − ry(1 + y)c−1 − (1 + y)c−r + (1 + y)c, thus,

r−1∑
t=1

t2
(

r

t+ 1

)(
c− r

x− t− 1

)
= r(r − 1)

(
c− 2

x− 2

)
− r

(
c− 1

x− 1

)
−
(
c− r

x

)
+

(
c

x

)
(15)

Finally, we analyse the first term in equation (11), viz.,
∑

1≤i<j≤n

∑
Ŝ⊂S;
|Ŝ|=x

(nD
i,Ŝ

− 1)1nD
i,Ŝ

>1(n
D
j,Ŝ

− 1)1nD
j,Ŝ

>1.

If a specific pair of jobs ai, aj appear (α + 1) and (β + 1) times respectively in some subset Ŝ ⊂ S of
cardinality x, then such a pair of jobs contribute αβ towards this expression that we are analysing. One
needs to add up such contributions from every distinct pair of jobs (ai, aj) and every subset Ŝ ⊂ S of
cardinality x to get the final value of this expression. The strategy that we adopt to compute this sum is as
follows : we find

∑
Ŝ⊂S;
|Ŝ|=x

(nD
i,Ŝ

−1)1nD
i,Ŝ

>1(n
D
j,Ŝ

−1)1nD
j,Ŝ

>1 for any given pair of distinct jobs (ai, aj). Observe

that this expression depends on how the pair of jobs (ai, aj) are distributed amongst the c servers, which
in turn depends on the particular balanced (n, k, r, c) job assignment D that is under consideration. Now,
given a particular pair of jobs (ai, aj), how they are farmed to the servers can essentially differ only in the
number of servers that are assigned both the jobs ai, aj simultaneously. The number of servers that are
simultaneously assigned both the jobs (ai, aj) can range from 0 to r. If a pair of jobs (ai, aj) are assigned
together to precisely m servers (with 0 ≤ m ≤ r), then the sum

∑
Ŝ⊂S;
|Ŝ|=x

(nD
i,Ŝ

− 1)1nD
i,Ŝ

>1(n
D
j,Ŝ

− 1)1nD
j,Ŝ

>1

calculated for this particular pair of jobs is precisely equal to the corresponding sum for every other pair
of jobs that are assigned together to precisely m servers. We use the notation

g(m,x) =
∑
Ŝ⊂S;
|Ŝ|=x

(nD
i,Ŝ

− 1)1nD
i,Ŝ

>1(n
D
j,Ŝ

− 1)1nD
j,Ŝ

>1 (16)
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to indicate this particular sum. We now show that the values of g(m,x) depends only on c, r,m and x.
We give the expression for g(0, x) in Lemma 1 and give a recursion to compute g(m,x) in Lemma 2.

Lemma 1. For a balanced (n, k, r, c) assignment, the value of g(0, x) is given by

g(0, x) =r2
(
c− 2

x− 2

)
− 2r

(
c− 1

x− 1

)
+

(
c

x

)
− 2

(
c− r

x

)
+ 2r

(
c− r − 1

x− 1

)
+

(
c− 2r

x

)
(17)

Proof. Consider a pair of jobs (ai, aj) such that no server has been assigned both ai and aj together.
Therefore there are precisely r servers that have been assigned ai and not aj . Another r servers that are
assigned aj but not ai and c− 2r servers that are assigned neither ai nor aj . Then

g(0, x) =
∑
Ŝ⊂S;
|Ŝ|=x

(nD
i,Ŝ

− 1)1nD
i,Ŝ

>1(n
D
j,Ŝ

− 1)1nD
j,Ŝ

>1 =
r∑

t=2

r∑
u=2

(t− 1)(u− 1)

(
r

t

)(
r

u

)(
c− 2r

x− t− u

)
(18)

Clearly any subset of servers Ŝ ⊂ S of cardinality x that has at most only one instance of the job
ai assigned amongst its members does not contribute to the sum. Ditto for aj . Therefore, one needs to
consider only those subsets Ŝ of servers that contain at least two servers that are assigned ai and at
least two servers that are assigned aj . In the final expression of equation (18),

(
r
t

)(
r
u

)(
c−2r
x−t−u

)
counts the

number of subsets of servers Ŝ of cardinality x that contain t servers assigned ai, u servers assigned aj
and x− t− u servers that have been assigned neither. The summation limits ensure that there are at least
2 servers assigned ai and at least 2 servers assigned aj . The expression (t− 1)(u− 1) is the contribution
of each subset Ŝ that contains t copies of ai and u copies of aj assigned to its members. A closed form
solution of the expression for g(0, x) can be obtained by considering

ry(1 + y)r−1 + 1− (1 + y)r =
r∑

t=1

(t− 1)

(
r

t

)
yt (19)

ry(1 + y)r−1 + 1− (1 + y)r =
r∑

u=1

(u− 1)

(
r

u

)
yu (20)

(1 + y)c−2r =
c−2r∑
v=0

(
c− 2r

v

)
yv (21)

Multiplying these three expressions (19), (20) and (21), we get
∑r

t=2

∑r
u=2(t− 1)(u− 1)

(
c−2r
x−t−u

)(
r
t

)(
r
u

)
to be the coefficient of yx in (ry(1 + y)r−1 + 1− (1 + y)r)

2
(1 + y)c−2r.

r∑
t=2

r∑
u=2

(t− 1)(u− 1)

(
c− 2r

x− t− u

)(
r

t

)(
r

u

)
=r2

(
c− 2

x− 2

)
− 2r

(
c− 1

x− 1

)
+

(
c

x

)
− 2

(
c− r

x

)
+ 2r

(
c− r − 1

x− 1

)
+

(
c− 2r

x

)
(22)

■

Lemma 2. For a balanced (n, k, r, c) assignment, the values for g(m,x) are related in the following
fashion

g(m+ 1, x)− g(m,x) =

(
c− 2

x− 1

)
− 2

(
c− r − 1

x− 1

)
+

(
c− 2r +m

x− 1

)
(23)

Proof. Let us consider a pair of jobs (ai, aj) that have been assigned together to precisely m servers.
Without loss of generality, let s1, s2, · · · , sm be the servers that are assigned both the jobs ai, aj . Let
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sm+1, sm+2, · · · , sr be the servers that have been assigned ai but not aj . Assume servers sr+1, sr+2, · · · , s2r−m

are the servers assigned aj but not ai. The last c− 2r+m servers s2r−m+1, s2r−m+2, · · · , sc are the ones
that have not been assigned ai or aj .

Let another pair of jobs (ai1 , aj1) be such that they have been assigned together to precisely m + 1
servers. We now consider a bijective map f : S → S described in the following fashion. Let f(sℓ) for
1 ≤ ℓ ≤ m+1 be servers that have been assigned both the jobs ai1 and ai2 . Let f(sℓ) for m+2 ≤ ℓ ≤ r
be servers that have been assigned ai1 but not aj1 . Further let f(sℓ) for r+2 ≤ ℓ ≤ 2r−m be servers that
have been assigned aj1 but not ai1 . The rest of f(sℓ) have not been assigned ai1 or aj1 . Thus there are
two special servers, namely sm+1 (which does job ai) and sr+1 (which does job aj), and whose images
f(sm+1) (which does both the jobs ai1 and aj1) and f(sr+1) (which does neither ai1 nor aj1) that we shall
pay special attention.

For any Ŝ ⊂ S of cardinality x, let us compare its contribution to the sum g(m,x) with the contribution
of f(Ŝ) towards g(m+1, x). Clearly, if Ŝ ⊂ S\{sm+1, sr+1}, then the contribution of Ŝ towards g(m,x) is
exactly the same as the contribution of f(Ŝ) to g(m+1, x). Similarly, if sm+1, sr+1 ∈ Ŝ, then contribution
of Ŝ towards g(m,x) and that of f(Ŝ) is exactly the same. Therefore it suffices to only consider those
subsets Ŝ of cardinality x that contain exactly one of the two special servers {sm+1, sr+1} to evaluate the
difference g(m + 1, x) − g(m,x). Hence we look at subsets Ŝ that are formed by taking either sm+1 or
sr+1 along with S̄ ⊂ S \ {sm+1, sr+1} of cardinality x− 1.

Let S̄ ⊂ S \{sm+1, sr+1} of cardinality x− 1 contain α > 0 instances of job ai and β > 0 instances of
job aj assigned to its servers. Then S̄∪{sm+1} contributes α(β−1) towards g(m,x), whereas S̄∪{sr+1}
contributes (α − 1)β towards g(m,x). At the same time, f(S̄) ∪ {f(sm+1)} contributes αβ towards
g(m + 1, x), whereas f(S̄) ∪ {f(sr+1)} contributes (α − 1)(β − 1) towards g(m + 1, x). Thus, one can
evaluate the contribution of S̄ towards the difference g(m+1, x)− g(m,x) to be αβ + (α− 1)(β − 1)−
α(β − 1)− (α− 1)β = 1. So every subset S̄ ⊂ S \ {sm+1, sr+1} of cardinality x− 1, whose servers have
at least one instance each of jobs ai and aj assigned to them, contributes a net change of 1 towards the
difference g(m + 1, x)− g(m,x). One needs to just count the number of subsets S̄ of cardinality x− 1
that satisfy these conditions to find g(m+ 1, x)− g(m,x).

Total number of subsets of cardinality x− 1 of the set S \ {sm+1, sr+1} of cardinality c− 2 is given by(
c−2
x−1

)
. If the subset S̄ is one of the

(
c−r−1
x−1

)
subsets chosen from the servers {sr+2, sr+2, · · · sc}, then the

job ai is not assigned to any of its servers. Similarly, if S̄ is one of the
(
c−r−1
x−1

)
chosen from the servers

{sm+2, sm+3, · · · , sr} ∪ {s2r−m+1, s2r−m+2, · · · , sc} does not have any instance of the job aj assigned to
its servers. As these subsets S̄ do not contribute to the difference g(m = 1, x)− g(m,x) , their numbers
have to be subtracted from

(
c−2
x−1

)
. In the process, S̄ ⊂ {s2r−m+1, s2r−m+2, · · · , sc} have been subtracted

twice and therefore
(
c−2r+m

x−1

)
needs to added back, thereby giving

g(m+ 1, x)− g(m,x) =

(
c− 2

x− 1

)
− 2

(
c− r − 1

x− 1

)
+

(
c− 2r +m

x− 1

)
■

Note that all the expressions for g(m,x) depends on the values of c, r,m and x and is therefore
independent of which balanced (n, k, r, c) assignment D we choose.

We now define mD(m) as the number of distinct pairs of jobs (ai, aj) with 1 ≤ i < j ≤ n that are
assigned together to precisely m servers in the balanced (n, k, r, c) assignment D. One can formally define
this number for a specific balanced (n, k, r, c) assignment D using the assignment matrix AD as

mD(m) =
∑
(i1,i2)

1≤i1<i2≤n

1∑c
j=1 AD[i1,j]AD[i2,j]=m (24)

Given a balanced (n, k, r, c) assignment D, the numbers mD(m) have some additional properties :
r∑

m=0

mD(m) =

(
n

2

)
(25)
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r∑
m=0

mmD(m) = c

(
k

2

)
(26)

Equation (25) follows from the fact that there are a total of n jobs and thus the total number of such
pairs is given by

(
n
2

)
. Equation (26) follows from the fact that the number of pairs of jobs that are assigned

together to a fixed server si is given by
(
k
2

)
. Summing over all such servers in S gives us the RHS in

(26). Note that we count each pair of jobs as many times as they appear together in a server and thus we
say

∑r
m=0 mmD(m) = c

(
k
2

)
.

Observe that the first term of equation (11) that we are evaluating can now be written as∑
1≤i<j≤n

∑
Ŝ⊂S;
|Ŝ|=x

(nD
i,Ŝ

− 1)1nD
i,Ŝ

>1(n
D
j,Ŝ

− 1)1nD
j,Ŝ

>1 =
r∑

m=0

mD(m)g(m,x) (27)

We therefore now conclude the following result regarding evaluation of variance σD,x(d) :

Theorem 2. Consider any assignment D amongst balanced (n, k, r, c) assignments. The variance on the
number of distinct jobs d (σD,x(d)) received at the master when any subset of servers S of cardinality
x > 1 is able to communicate to the master with equal probability is stated as an equation below.

σD,x(d) =

2
r∑

m=0

mD(m)g(m,x) + T2(n, r, c, x)(
c
x

) − (T1(n, r, c, x))
2 (28)

where T1(n, r, c, x) =
n(c−r

x )
(cx)

+ n× ( rx
c
− 1)

T2(n, r, c, x) =n
r−1∑
t=1

t2
(

r

(t+ 1)

)(
(c− r)

(x− t− 1)

)
(29)

=n

(
r(r − 1)

(
c− 2

x− 2

)
− r

(
c− 1

x− 1

)
−
(
c− r

x

)
+

(
c

x

))
(30)

Thus, we have shown that while the mean of the number of received jobs d is the same for all balanced
(n, k, r, c) assignments, the variance of d is dependent on the frequency of job pairs assigned to the
servers.

IV. RESULTS ON THE LEAST VARIANCE ON THE NUMBER OF DISTINCT JOBS d

With this setup, we now study assignment schemes on when the least variance on the number of distinct
jobs d is attained. We specifically propose pairwise balanced designs discussed in Definition 4 and 5 in
Theorem 3 and 4 and show that it attains the least variance amongst the class of balanced assignments.
We now compare this definition to balanced incomplete block designs (BIBD) [1], [2] and show that it
is a generalization of the same.

Defintion 3. (BIBD (v, b, r, k, λ) scheme as in [2]) - A balanced incomplete block design (BIBD) is a
pair (V,B) where V is a v-set and B is a collection of b k-sized subsets of V (blocks) such that each
element of V is contained in exactly r blocks and any 2-subset of V is contained in exactly λ blocks.

Note that this set up can be directly mapped to our setup where V denotes the set of all jobs and each
block in B denotes a server and each server(block) in B is precisely assigned those jobs corresponding
to the set of elements of V in that block. Also, observe that in BIBD design, we require every set of jobs
to occur together in the same number of servers but our pairwise balanced schemes allow a tolerance of
upto 1 as we can see in Definition 4.
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Definition 4. (Pairwise balanced job (n, k, r, c) assignment): Given a balanced (n, k, r, c) assignment, we
call it pairwise balanced job (n, k, r, c) assignment if for every pair of distinct jobs ai and aj in A, the
number of servers which are assigned both ai and aj is exactly l or l + 1 for some integer l.

Using mD(.) defined in (24), we can define pairwise balanced job assignments below. W.L.O.G, we
may assume in pairwise balanced job (n, k, r, c) assignment, there always exist a pair of jobs occurring
together in l server and there may or may not be pairs of jobs that occur together in l + 1 servers.

Definition (Definition 4 in terms of mD(.)). (Pairwise balanced job (n, k, r, c) assignment): Given a
balanced (n, k, r, c) assignment, we call it server pairwise -balanced (n, k, r, c) if mD(m) is non-zero for
at most 2 consecutive values of m (call it l and l + 1).

Thus, we can see that BIBD would also fall into the category of pairwise balanced job assignment
schemes. The existence of BIBD is still not fully understood and some sufficient conditions on n, k, r
and c under which BIBD exists are also discussed in [1], [2]. The famous Bruck-Ryser-Chowla theorem
gives some necessary condition on n, k, c, r for the existence of BIBDs.

The following corollary proves a result on l for any pairwise balanced job (n, k, r, c) assignment.

Lemma 3. For any pairwise balanced job (n, k, r, c) assignment, we have l =
⌊
c.(k2)
(n2)

⌋
Proof. For any pairwise balanced job (n, k, r, c) assignment D, we must have mD(m) to be zero for
all m ̸= l, l + 1. Thus, we have mD(l + 1) =

(
n
2

)
− mD(l) using eqaution (25) and similarly, we have

l(mD(l))+(l+1)(
(
n
2

)
−mD(l)) = c

(
k
2

)
using equation (26). We thus have l

(
n
2

)
≤ c
(
k
2

)
and (l+1)

(
n
2

)
> c
(
k
2

)
(as mD(l) > 0) and thus l =

⌊
c.(k2)
(n2)

⌋
■

Definition 5. (Pairwise balanced server (n, k, r, c) assignment): Given a balanced (n, k, r, c) assignment,
we call it server pairwise -balanced (n, k, r, c) if for every pair of distinct servers si and sj in S, the
number of jobs assigned to both si and sj is exactly l or l + 1 for some integer l.

Lemma 4. For any pairwise balanced server (n, k, r, c), we must have l =
⌊
n.(r2)
(c2)

⌋
This lemma can be proved in a very similar way as that of Lemma 3.
With this, we could alternately redefine pairwise balanced server (n, k, r, c) schemes as follows in terms

of matrix AD as follows.

Definition (Definition 4 in terms of AD). (Pairwise balanced server (n, k, r, c) assignment): Given a
balanced (n, k, r, c) assignment, we call it server pairwise -balanced (n, k, r, c) if for every pair of distinct
indices i and j, |supp(AD[:, i]) ∩ supp(AD[:, j])| = l or l + 1 for some integer l.

Definition (Definition 5 in terms of AD). (Pairwise balanced job (n, k, r, c) assignment): Given a balanced
(n, k, r, c) assignment, we call it job pairwise -balanced (n, k, r, c) if for every pair of distinct indices i
and j, |supp(AD[i, :]) ∩ supp(AD[j, :])| = l or l + 1 for some integer l.

We now describe a pairwise balanced job and server scheme in Example 2 below. Note that the balanced
design is both pairwise job and server balanced in this design. Further, in example 3, we present an
assignment scheme which is pairwise server balanced but not pairwise job balanced.

Example 2. We now describe a pairwise balanced server and job (9, 3, 3, 9) assignment scheme in Table
2. Note that in this scheme, every pair of jobs appear together in exactly 1 or 0 servers, thus it is a
pairwise balanced job assignment scheme. Similarly, we can also show that it is also a pairwise balanced
server scheme too as every pair of servers has either one job or zero jobs common.
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Jobs s1 s2 s3 s4 s5 s6 s7 s8 s9
a1 1 1 1
a2 1 1 1
a3 1 1 1
a4 1 1 1
a5 1 1 1
a6 1 1 1
a7 1 1 1
a8 1 1 1
a9 1 1 1

TABLE 2
ASSIGNMENT OF JOBS TO VARIOUS SERVERS IN A PAIRWISE BALANCED (9, 3, 2, 6) ASSIGNMENT SCHEME

Example 3. We now describe a pairwise balanced server (14, 6, 3, 7) assignment but not a pairwise
balanced job scheme in Table 3. Note that in this scheme, every pair of servers have exactly 2 jobs in
common. However, some pairs of jobs appear together in 1 server like (a1, a2) and some pairs of jobs
appear together in 3 servers like pairs of jobs (a1, a8) and thus it is not pairwise job balanced.

Jobs s1 s2 s3 s4 s5 s6 s7
a1 1 1 1
a2 1 1 1
a3 1 1 1
a4 1 1 1
a5 1 1 1
a6 1 1 1
a7 1 1 1
a8 1 1 1
a9 1 1 1
a10 1 1 1
a11 1 1 1
a12 1 1 1
a13 1 1 1
a14 1 1 1

TABLE 3
ASSIGNMENT OF JOBS TO VARIOUS SERVERS IN A PAIRWISE SERVER BALANCED (14, 6, 3, 7) ASSIGNMENT SCHEME

Note that the following two theorems say that the variance on the number of distinct d received at the
master is the least for the pairwise balanced designs discussed in Definition 4 and 5. However such designs
may not always exist and it is not entirely known when such designs exist for every tuple of (n, k, r, c)
satisfying n× r = k × c. This is closely related to balanced incomplete block designs (BIBD) [1] whose
existence is not fully and clearly understood. However, a key difference for the pairwise balanced designs
we consider is that it is a generalization of BIBD in which they restrict the number of jobs common to
any pair of servers to be the same for every such pair of servers.

Recall that for the following theorems, we study the setup described in Section III where any set of x
servers could be the only set of servers that could communicate with the master. Recall that we further
assume that every set of x servers is equally likely to be the only set of servers that could communicate
with the master.

Theorem 3. The least variance of the number of distinct jobs d received at the master for any x ∈
[2, c − 2r + 1] is attained uniquely by the pairwise balanced job (n, k, r, c) assignment schemes (if it
exists) amongst all balanced (n, k, r, c) assignments.

However, for x > c−2r+1, the result on least variance still holds but the uniqueness is not guaranteed.

We prove this theorem in Section VIII
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Also under a special constraint n = c, the above theorem can also be stated as follows and we can say
that the same result holds true for pairwise server balanced (n, k, r, c) scheme too.

Theorem 4. The least variance of the number of distinct jobs received at the master for any x ∈ [1, c−2r+
1] is attained uniquely by both the pairwise balanced server (n, k, k, n) assignment schemes and pairwise
balanced job (n, k, k, n) assignment schemes (if it exists) amongst all balanced (n, k, k, n) assignments.

However, for x > c−2r+1, the result on least variance still holds but the uniqueness is not guaranteed.

We prove this theorem in Section X.

V. RESULTS ON THE LARGEST VARIANCE ON THE NUMBER OF DISTINCT JOBS d

With this setup, we now study assignment schemes on when the largest variance in the number of
distinct jobs d is attained. We specifically define pairwise heavy imbalanced job (n, k, r, c) assignment
discussed in Definition 6 and show that in Theorem 5 that these schemes attain the largest variance
amongst the class of balanced assignment schemes.

Definition 6. (Pairwise heavy imbalanced job (n, k, r, c) assignment): Given a balanced (n, k, r, c) as-
signment, we call it pairwise imbalanced job (n, k, r, c) assignment if for every pair of distinct jobs ai
and aj in A, the number of servers which are assigned both ai and aj is exactly 0 or r.

Definition (Definition 6 in terms of AD). (Pairwise heavy imbalanced job (n, k, r, c) assignment): Given
a balanced (n, k, r, c) assignment, we call it job pairwise heavy-imbalanced job (n, k, r, c) assignment if
for every pair of distinct indices i and j, |supp(AD[i, :]) ∩ supp(AD[j, :])| = 0 or r.

Lemma 5. A pairwise heavy imbalanced job (n, k, r, c) assignment can exist only when either n or k− 1
is even.

Proof. Observe from (26) that
∑r

m=0m
D(m) = c

(
k
2

)
. Suppose neither n nor k− 1 is even, thus implying

that n(k − 1) is not divisible by 2. However, for a pairwise heavy imbalanced job (n, k, r, c) assignment

scheme D, mD(m) is non-zero only for m ̸= 0, r and thus, mD(r) =
c(k2)
r

= n(k−1)
2

. Thus, n(k− 1) being
odd would imply a fractional value for mD(r) which is clearly not possible. ■

Example 4. We now describe a pairwise heavy imbalanced job (9, 3, 2, 6) assignment scheme in Table 4.
Note that in this scheme, every pair of jobs appear together in exactly 2 or 0 servers, thus it is a pairwise
heavy imbalanced job assignment scheme.

Jobs s1 s2 s3 s4 s5 s6
a1 1 1
a2 1 1
a3 1 1
a4 1 1
a5 1 1
a6 1 1
a7 1 1
a8 1 1
a9 1 1

TABLE 4
ASSIGNMENT OF JOBS TO VARIOUS SERVERS IN A PAIRWISE HEAVY IMBALANCED (9, 3, 2, 6) ASSIGNMENT SCHEME

Recall that for the following theorems, we study the setup described in Section III where any set of x
servers could be the only set of servers that could communicate with the master. Recall that we further
assume that every set of x servers is equally likely to be the only set of servers that could communicate
with the master.
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Theorem 5. The largest variance of the number of distinct jobs d received at the master for any x ∈
[2, c − 2r + 1] is attained uniquely by the pairwise balanced job (n, k, r, c) assignment schemes (if it
exists) amongst all balanced (n, k, r, c) assignments.

However, for x > c − 2r + 1, the result on largest variance still holds but the uniqueness is not
guaranteed.

We prove this theorem in Section IX

VI. GENERALIZATION WHERE THE NUMBER OF SERVERS THAT RETURN (x) IS RANDOM

We now discuss an alternate scenario where each server is independently and equally likely to com-
municate with the master with probability p. Note that under this setup, the distribution of the number of
servers x that could communicate is given by Bin(c, p). Also, observe that conditioned on x, every subset
of x sized servers is equally likely to communicate with the master. Under this setup, we can now state
our results on mean and variance on the number of distinct jobs on variance below.

Theorem 6. Consider any balanced (n, k, r, c) assignment D. We now consider a setup where each server
is independently and equally likely to communicate with the master with probability p. The expectation
of the number of distinct completed jobs d received is the same for every assignment D amongst all
balanced (n, k, r, c) assignments and is given by

ED[d] = n− n(1− p)r (31)

and the variance is given by

σD(d) =
c∑

x=0

σD,x(d)

(
c

x

)
px(1− p)c−x (32)

where σD,x(d) is given by the expression in Equation (28).

Proof. Observe that under this setup, the number of servers that could communicate with the master x
can be given by a binomial distribution Bin(c, p). Also observe that under this setup conditioned on x,
any set of x servers is equally likely to communicate with the master.

We can thus say that

ED[d] =Ex∼Bin(c,p)ED,x[d] (33)

(a)
=

c∑
x=0

n

(
1−

(
c−r
x

)(
c
x

) )(c
x

)
px(1− p)c−x (34)

= n− n(1− p)r
c∑

x=0

(
c− r

x

)
px(1− p)c−r−x = n− n(1− p)r (35)

Note (a) follows from the expression of mean in Theorem 6. Using a very similar technique, we can
prove a result of σD(d) as well. ■

We can actually generalize some of our results in Theorem 3 and 4 for a more generalized setup where
the number of servers that return is not unique but is sampled from some distribution P . However, we
ensure that the subset S1 is the set of servers that could communicate is equally likely as the subset of
servers S2 that could communicate if |S1| = |S2|. Formally, we study the setup where x is sampled from
a distribution P and conditioned on x, any subset of x servers is equally likely to be the set of servers
that could communicate with the master.

This precisely captures the case where every server is independently able to communicate to the master
with probability p, in which case P would be given by Bin(c, p)
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Theorem 7. Let us consider x ∼ P . Conditioned on x, we study the setup where any set of x servers is
equally likely to communicate with the master. Then both the pairwise balanced job (n, k, r, c) assignment
schemes and pairwise balanced server (n, k, r, c) assignment schemes (if exists) attain the least variance
on the number of distinct jobs received at master amongst all balanced (n, k, r, c) assignment schemes.

Proof. Let us denote the number of distinct jobs when any set of x servers return uniformly at random by
d. However, in our problem x itself might be sampled from a distribution P . Let us denote the variance
in this set-up under this assignment of jobs to servers (say D) by σD,x∼P(d).

Now using law of variances, we can say that

σD,x∼P(d) = Ex∼P [σD,x(d)] + σx∼P [ED,x(d)]

. Now consider assignments D and D1 such that assignment D is a pairwise balanced job (n, k, r, c)
assignment scheme and assignment D1 could be any balanced (n, k, r, c) assignment scheme.

However, we know from Thoerem 4 that σD,x(d) ≤ σD1,x(d) for every x and assignments D,D1 such
that assignment D is a pairwise balanced job (n, k, r, c) assignment scheme and assignment D1 could be
any balanced (n, k, r, c) assignment scheme.

We also know that ED,x(d) = ED1,x(d) from Thoerem 6. Combining the two properties, we get that
σD,x∼P(d) ≤ σD′,x∼P(d) thus proving the theorem.

■

Using a very similar approach, we can also prove a similar result to that of Theorem 4 the case when
the number of jobs and servers are equal and we can also prove a similar result corresponding to that of
Theorem 5.

Theorem 8. Let us consider x ∼ P . Conditioned on x, we study the setup where any set of x servers
is equally likely to communicate with the master. Then the pairwise balanced job (n, k, k, n) assignment
schemes (if exists) attain the least variance on the number of distinct jobs received at master amongst all
balanced (n, k, k, n) assignment schemes.

Theorem 9. Let us consider x ∼ P . Conditioned on x, we study the setup where any set of x servers is
equally likely to communicate with the master. Then both the pairwise heavy imbalanced job (n, k, r, c)
assignment scheme (if exists) attain the largest variance on the number of distinct jobs received at master
amongst all balanced (n, k, r, c) assignment schemes.

VII. PROOF OF COROLLARY 1
Corollary 1. For x > c− r , the expression of σD,x(d) in Equation (28) in Theorem 2 goes to zero.

Proof. Recall the expression of σD,x(d) from Equation (28). Observe that expression g(m+1, x)−g(m,x)
from Equation (23) would be

(
c−2
x−1

)
for x > c− r as the second and third term in equation (23) goes to

zero since p ≤ r and x > c− r.

g(m+ 1, x)− g(m,x) =

(
c− 2

x− 1

)
(36)

Let us now compute g(0, x) using the expression in (18) and (17) for x > c− r.

g(0, x) =
r+1∑
i=2

r+1∑
j=2

(i− 1)(j − 1)

(
c− 2r

x− i− j

)
= r2

(
c− 2

x− 2

)
− 2r

(
c− 1

x− 1

)
+

(
c

x

)
(37)

Thus, from equations (36) and (37), we get

g(m,x) = r2
(
c− 2

x− 2

)
− 2r

(
c− 1

x− 1

)
+

(
c

x

)
+m×

(
c− 2

x− 1

)
(38)
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Since, x > c − r, we may claim that the term T2(n, k, r, c) in Equation (28) in Thoerem 2 goes as
follows.

T2(n, k, r, c) =
r−1∑
t=1

t2
(

r

(t+ 1)

)(
(c− r)

(x− t− 1)

)
=

(
r(r − 1)

(
c− 2

x− 2

)
− r

(
c− 1

x− 1

)
+

(
c

x

))
(39)

Also observe that since x > c− r the term
(
c−r
x

)
goes to zero, hence not written in equation (15). Thus

the numerator of the first term in equation (28) in Thoerem 2 is given by (from equations (37) and (38)
and (39))

2.
r∑

m=0

mD(m)g(m,x) + n

r−1∑
t=1

t2
(

r

(t+ 1)

)(
(c− r)

(x− t− 1)

)

=
r∑

m=0

(
2mD(m)

(
r2
(
c− 2

x− 2

)
− 2r

(
c− 1

x− 1

)
+

(
c

x

))
+ 2mmD(m)

(
c− 2

x− 1

))

+ n

(
r(r − 1)

(
c− 2

x− 2

)
− r

(
c− 1

x− 1

)
+

(
c

x

))
(a)
=

(
r2
(
c− 2

x− 2

)
− 2r

(
c− 1

x− 1

)
+

(
c

x

))
n(n− 1) +

(
c− 2

x− 1

)
ck(k − 1)

+ n

(
r(r − 1)

(
c− 2

x− 2

)
− r

(
c− 1

x− 1

)
+

(
c

x

))
(b)
=

(
c− 2

x− 2

)
(nr(nr − 1)) +

(
c− 2

x− 1

)
ck(k − 1)−

(
c− 1

x− 1

)
(nr(2n− 1)) + n2

(
c

x

)
(c)
=

(
c− 2

x− 2

)
n2r2 +

(
c− 2

x− 1

)
ck2 −

(
c− 1

x− 1

)
(nr(2n)) + n2

(
c

x

)
(d)
=

(
c− 1

x− 1

)
nr × kx−

(
c− 1

x− 1

)
(nr(2n)) + n2

(
c

x

)
(e)
=

(
c

x

)((nrx
c

)2
− 2n

(nrx
c

)
+ n2

)
(f)
=

(
c

x

)(
n×

(rx
c

− 1
))2

(40)

We now argue for each of the steps below.

• (a) follows since
r∑

m=0

m×mD(m) = c
(
k
2

)
and

r∑
m=0

mD(m) =
(
n
2

)
in Equations (25) and (26)

• (b) follows by combining the coefficints of
(
c−2
x−2

)
,
(
c−1
x−1

)
and

(
c
x

)
.

• (c) follows as nr
(
c−2
x−2

)
+ kc

(
c−2
x−1

)
= nr

(
c−1
x−1

)
. This can be explained by the fact that n× r = k × c.

• (d) follows from the following set of equalities(
c− 2

x− 2

)
n2r2 +

(
c− 2

x− 1

)
ck2 =

(c− 1)!

(x− 2)!
(c− x− 1)!

(
ck

c− x
+

k

x− 1

)
=

(c− 1)!× nr × kx(c− 1)

(x− 2)!(c− x)(x− 1)

= nr × kx

(
c− 1

x− 1

)
• (e) and (f) follow from the fact that n× r = k × c
Now, observe the second term of σD,x(d) in equation (28) and we see that T1(n, k, r, c) = n×

(
rx
c
− 1
)

as x > c− r. Thus, using equation (40), we can say that σD,x(d) = 0 for x > c− r.
■
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VIII. PROOF OF THEOREM 3
To prove theorem 3, we first show some results using the convexity property of g(., x) [for a given x]

as defined in Theorem 2. Note that g(m+ 1, x)− g(m,x) as defined in Theorem 2 increases with p.

Claim 1. Recall the definition of g(p, x) as defined in Equation (16). Then, the following can be said (for
every c− 2r + 1 ≥ x > 1):

•
g(m+k1,x)−g(m,x))

k1
> g(m,x))−g(m−k2,x)

k2
∀ k1, k2 ∈ N.

•
g(m+k1,x)−g(m,x)

k1
> g(m+1,x))−g(m−k2+1,x)

k2
∀ k1, k2 ∈ N with (k1, k2) ̸= (1, 1).

•
g(m+k1+1,x)−g(m+1,x)

k1
> g(m,x)−g(m−k2,x)

k2
∀ k1, k2 ∈ N with (k1, k2) ̸= (1, 1).

•
g(m+k1,x)−g(m,x)

k1
> g(m+k2,x)−g(m,x)

k2
∀ k1, k2 ∈ N, k1 > k2.

However, the inequalities may not strict for x > c− 2r + 1 but maybe attained with equality

Proof. We first prove the strict inequalities assuming x ≤ c− 2r + 1

g(m+ k1, x)− g(m,x)

k1
=

i=k1−1∑
i=0

(g(m+ i+ 1, x)− g(m+ i, x))

k1

(a)

≥ k1(g(m+ 1, x)− g(m,x)

k1
≥g(m+ 1, x)− g(m,x) (41)

Now consider,

g(m+ k1 + 1, x)− g(m+ 1, x)

k1
=

i=k1∑
i=1

(g(m+ i+ 1, x)− g(m+ i, x))

k1

(d)

≥ k1(g(m+ 2, x)− g(m+ 1, x)

k1
>g(m+ 2, x)− g(m+ 1, x)

(42)

Note (a) and (d) follow since since g(m + i + 1, x) − g(m + i, x) > g(m + 1, x) − g(m,x) ∀i ∈ N as
shown in in Claim 2 where

g(m,x)− g(m− 1, x) =

[(
(c− 2)

(x− 1)

)
− 2

(
(c− r − 1)

(x− 1)

)
+

(
(c− 2r +m− 1)

(x− 1)

)]
strictly increases with m for every c− 2r + 1 > x > 1. Also observe that (a) and (d) would be tight

inequalities when k1 > 1.
Similarly,

g(m,x)− g(m− k2, x)

k2
=

i=k2−1∑
i=0

(g(m− i, x)− g(m− i− 1, x))

k2

(b)

≤k2(g(m,x)− g(m− 1, x)

k2
≤g(m,x)− g(m− 1, x) (43)

Similarly,

g(m+ 1, x)− g(m− k2 + 1, x)

k2
=

i=k2−1∑
i=0

(g(m− i+ 1, x)− g(m− i, x))

k2

(c)

≤k2(g(m+ 1, x)− g(m,x)

k2
≤g(m+ 1, x)− g(m,x)

(44)

Note (b) and (c) follow since g(m− i, x)− g(m− i− 1, x) ≤ g(m,x)− g(m− 1, x) ∀i ∈ N as shown
in Claim 2 where g(m + 1, x) − g(m,x) strictly increases with m for every c − 2r + 1 > x > 1. Also
observe that (b) and (c) would be tight inequalities when k2 > 1.
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Thus we can say from Equations (41),(42),(43),(44) and the fact that g(m+1)−g(m) strictly increases
with m, the following equations (45),(46),(47).

g(m+ k1, x)− g(m,x)

k1
>

g(m,x)− g(m− k2, x)

k2
∀k1, k2 ∈ N (45)

and

g(m+ k1, x)− g(m,x)

k1
>

g(m+ 1, x)− g(m− k2 + 1, x)

k2
∀k1, k2 ∈ N with (k1, k2) ̸= (1, 1). (46)

g(m+ k1 + 1, x)− g(m+ 1, x)

k1
>

g(m+ 1, x)− g(m− k2 + 1, x)

k2
∀k1, k2 ∈ N with (k1, k2) ̸= (1, 1).

(47)
Thus the first, second and third inequalities in Claim 1are precisely the equations (45),(46) and (47).
Now consider the following for k1 > k2

g(m+ k1, x)− g(m,x)

k1
≥ g(m+ k2, x)− g(m,x)

k2
⇔ g(m+ k1, x)− g(m+ k2, x)

k1 − k2
≥ g(m+ k2, x)− g(m,x)

k2
Note that since k1 > k2, we prove the inequality on R.H.S from Equation (45). Thus, the fourth

inequality in Claim 1 holds true.
Observe that for x > c− 2r + 1, the function g(m + 1, x)− g(m,x) is not strictly increasing with m

as the last term
(
c−2r+m−1

x−1

)
maybe zero when m equals 0 or 1 and thus the inequalities in the lemma

maybe attained with equality. ■

Let us now re-state and prove Theorem 3.

Theorem. The least variance of the number of distinct jobs received at the master for any x ∈ [2, c−2r+1]
is attained uniquely by the pairwise balanced job (n, k, r, c) assignment schemes (if it exists) amongst all
balanced (n, k, r, c) assignments.

However, for x > c−2r+1, the result on least variance still holds but the uniqueness is not guaranteed.

Recall the expression of the variance from Theorem 2 and observe that g(m,x) is a convex function in
m. The essential idea of the proof is to use the convexity property of g(., x) and show that this expression
takes the least value when mD(m) is non-zero for exactly two consecutive values of m.

Proof. Recall the definition of mD(m) from Equation 24 which denotes the number of pairs of jobs that
are assigned together to exactly m servers.

Now we know that mD(m) = 0 only for m ̸= l, l+1 for any pairwise balanced job (n, k, r, c) assignment

scheme. This would ensure that l = ⌊ c.(k2)
(n2)

⌋ as shown in Lemma 3.

Let us consider another job assignment D1 which is a balanced (n, k, r, c) assignment scheme.

First observe that
r∑

m=0

mD(m) =
r∑

m=0

mD1(m) =
(
n
2

)
which follows from Equation (25) and

r∑
m=0

m ×

mD(m) =
r∑

m=0

m×mD1(m) = c
(
k
2

)
follows from Equation (26).

We thus have

r∑
m=0

mD(m) =
r∑

m=0

mD1(m) =

(
n

2

)
and

r∑
m=0

m×mD(m) =
r∑

m=0

m×mD1(m) = c

(
k

2

)
(48)

We now consider four different cases and in each of these cases, we show that the variance is the least
for the assignment D. Also, we first consider the case where x ≤ c− 2r + 1 to prove that least variance
is uniquely attained by pairwise balanced designs.
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• Case 1: mD1(l) ≥ mD(l) but mD1(l + 1) ≥ mD1(l + 1)
Note that mD1(m) ≥ mD(m)∀m ∈ [r] which follows since mD(m) = 0∀m ̸= l, l + 1. However,
equation (48) would imply that mD(m) = mD1(m) ∀ m ∈ [r] which would imply distribution D1 has
same variance of distinct jobs as that of distribution D which follows from Equation 28 in Theorem
2 as the variance σD,x is just a function of mD(.) other than design parameters n, k, r and c.

• Case 2: mD1(l) < mD(l) but mD1(l + 1) ≥ mD1(l + 1)
Let us denote xm = mD1(m) − mD(m) ∀m ∈ [0, r]. Clearly, xm < 0 only for m = l as for every
m ̸= l, l + 1 we have mD(m) = 0

Observe that equation (48) ensures that
r∑

m=0

xm =
r∑

m=0

m× xm = 0.

Let us denote
l−1∑
m=0

xm = x and
r∑

m=l+1

xm = y. Since
r∑

m=0

xm = 0, we can say that xl = −(x+ y).

Thus,

r∑
m=0

m.xm = 0 ⇔ (x+y)l =
r∑

m=l+1

m×xm+
∑
m<l

m×xm ⇔
r∑

m=l+1

xm×(m−l) =
l−1∑
q=0

xq×(l−q) (49)

However, we know from Claim 1 that

g(m,x)− g(l, x)

m− l
>

g(l, x)− g(q, x)

l − q
∀m > l > q (50)

These equations (49) and (50) and the fact that xm ≥ 0 for m ̸= l,m ∈ [0, r] above would imply:
r∑

m=l+1

xm(g(m,x)− g(l, x)) >
l−1∑
q=0

xq(g(l, x)− g(q, x))
(c)⇔
∑
m̸=l

m∈[0,r]

xm.g(m,x)−
∑
m̸=l

m∈[0,r]

xmg(l, x) > 0

⇔
∑
m̸=l

m∈[0,r]

xm.g(m,x) + xl.g(l, x) > 0

⇔
r∑

m=0

xmg(m,x) > 0

(f)⇔
r∑

m=0

mD1(m)g(m,x) >
r∑

m=0

mD(m)g(m,x)

(51)

Note (c) follows since
r∑

m=0

xm = 0 and (f) follows from the fact that xm = mD1(m)−mD(m)

Now let us consider the numerator of the first term in σD,x(d) as in theorem 28 which can be written

as 2.
r∑

m=0

mD(m)g(m,x) + n.

(
r−1∑
t=1

t2
(

r
(t+1)

)(
(c−r)

(x−t−1)

))
.

Thus the inequality proven in equation (51) would imply that distribution D1 has higher variance of
number of distinct jobs received than that of distribution D.

• Case 3: mD1(l + 1) < mD(l + 1) but mD1(l) ≥ mD(l)
Note this can be proven in a very similar way as that of Case 2. The entire proof could be done for
l + 1 instead of l

• Case 4: mD1(l + 1) < mD(l + 1) and mD1(l) < mD(l)
Let us denote xm = mD1(m)−mD(m) ∀m ∈ [0, r]. Clearly, xm < 0 only for m = l, l + 1.

Now equation (48) ensures that
r∑

m=0

m× xm = 0 and
r∑

m=0

xm = 0.
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Let us denote
l−1∑
m=0

xm = α1 + α2 and
r∑

m=l+2

xm = β1 + β2. Since
r∑

m=0

xm = 0, we can say that

xl = −(α1 + β1) and xl+1 = −(α2 + β2) for some α1, β1, α2, β2 ∈ N (52)

Now define [ym]
r
m=0 and [zm]

r
m=0as follows below.

– ym = xm × α1

α1+α2
and zm = xm × α2

α1+α2
if 0 ≤ m < l

– ym = xm × β1

β1+β2
and zm = xm × β2

β1+β2
for l + 1 < m ≤ r

– ym = α1 and zm = α2 if m = l
– ym = β1 and zm = β2 if m = l + 1

Thus,
r∑

m=l+2

ym = β1 ;
r∑

m=l+2

zm = β2;
l−1∑
m=0

ym = α1 ;
l−1∑
m=0

zm = α2;

Thus
r∑

m=0

mxm = 0 implies the following set of conditions.

(α1 + β1)l + (α2 + β2)(l + 1) =
r∑

m=l+2

m× xm +
l−1∑
m=0

m× xm

(d)⇔

(
r∑

m=l+2

ym +
l−1∑
m=0

ym

)
l +

(
r∑

m=l+2

zm +
l−1∑
m=0

zm

)
(l + 1) =

r∑
m=l+2

m× (ym + zm) +
l−1∑
m=0

m× (ym + zm)

⇔
r∑

m=l+2

ym(m− l) +
r∑

m=l+2

zm(m− l − 1) =
l−1∑
q=0

yq(l − q) +
l−1∑
q=0

zq(l + 1− q) (53)

Note (d) follows since

i) ym + zm = xm∀m ∈ [0, l − 1] ∪ [l + 2, r], ii)
r∑

m=l+2

ym +
l−1∑
q=0

yq = (α1 + β1) and

iii)
r∑

m=l+2

zm +
l−1∑
q=0

zq = (α2 + β2)

Now we can say from Claim 1 that

g(m,x)− g(t, x)

m− t
>

g(u, x)− g(q, x)

u− q
∀m > l + 1, q < l and t, u ∈ {l, l + 1}. (54)

Thus we can say the following from equations (53) and (54) and the fact that xm, ym, zm > 0 for
m ∈ [0, r];m ̸= {l, l + 1}.
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r∑
m=l+2

ym(g(m,x)− g(l, x)) +
r∑

m=l+2

zm(g(m,x)− g(l + 1, x)) (55)

>
l−1∑
q=0

yq(g(l, x)− g(q, x)) +
l−1∑
q=0

zq(g(l + 1, x)− g(q, x)) (56)

(e)⇔
∑

m ̸=l,l+1
m∈[0,r]

(ym + zm)g(m,x) + (α1 + β1)g(l, x) + (α2 + β2)g(l + 1, x) > 0 (57)

(g)⇔
∑

m ̸=l,l+1
m∈[0,r]

xm.g(m,x) + xl.g(l, x) + xl+1.g(l + 1, x) > 0 (58)

⇔
r∑

m=0

xm.g(m,x) > 0 (59)

(h)⇔
r∑

m=0

mD1(m)g(m,x) >
r∑

m=0

mD(m)g(m,x) (60)

Note (e) follows since
r∑

m=l+2

ym+
l−1∑
q=0

yq = (α1+β1) and
r∑

m=l+2

zm+
l−1∑
q=0

zq = (α2+β2) from Equation

(52) and the fact ym + zm = xm∀m ∈ [0, l − 1] ∪ [l + 2, r].
(g) follows from the fact that xl = −(α1+β1) and xl+1 = −(α2+β2) (h) follows from the fact that
that xm = mD1(m)−mD(m)
Now let us consider the numerator of the first term in σD,x(d) as in theorem 28 which can be written

as 2.
r∑

m=0

mD(m)g(m,x) + n.

(
r−1∑
t=1

t2
(

r
(t+1)

)(
(c−r)

(x−t−1)

))
.

Thus the inequality proven in the previous equation (55) would imply that distribution D1 has higher
variance of number of distinct jobs received than that of distribution D.
Note that other than Case 1 in this proof (where we show D1 is also a pairwise balanced assignment),
the distribution D1 is not a pairwise balanced job design and we show strict optimality of pairwise
balanced job design over any other balanced assignment for x ≤ c−2r+1. However, if x ≥ c−2r+1,
the inequalities still hold but are not strict as it follows from Claim 1.
Combining these statements, we prove the strict optimality (attains least variance )of pairwise balanced
designs for x ≤ c− 2r + 1 and weak optimality for x > c− 2r + 1

■

IX. PROOF OF THEOREM 5
Let us first restate and prove Theorem 5.

Theorem. The largest variance of the number of distinct jobs d received at the master for any x ∈
[2, c − 2r + 1] is attained uniquely by the pairwise balanced job (n, k, r, c) assignment schemes (if it
exists) amongst all balanced (n, k, r, c) assignments.

However, for x > c − 2r + 1, the result on the largest variance still holds but the uniqueness is not
guaranteed.

Recall the expression of the variance from Theorem 2 and observe that g(m,x) is a convex function in
m. The essential idea of the proof is to use the convexity property of g(., x) and show that this expression
takes the largest value when mD(m) are non-zero for exactly those values of m when it is zero or r.
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Proof. Recall the definition of mD(m) from Equation 24 which denotes the number of pairs of jobs that
are assigned together to exactly m servers.

Now we know that mD(m) = 0 only for m ̸= 0, r for any pairwise balanced job (n, k, r, c) assignment
scheme.

Let us consider another job assignment D1 which is a balanced (n, k, r, c) assignment scheme.

First observe that
r∑

m=0

mD(m) =
r∑

m=0

mD1(m) =
(
n
2

)
which follows from Equation (25) and

r∑
m=0

m ×

mD(m) =
r∑

m=0

m×mD1(m) = c
(
k
2

)
follows from Equation (26).

We thus have

r∑
m=0

mD(m) =
r∑

m=0

mD1(m) =

(
n

2

)
and

r∑
m=0

m×mD(m) =
r∑

m=0

m×mD1(m) = c

(
k

2

)
(61)

We now consider four different cases and in each of these cases, we show that the variance is the least
for the assignment D. Also, we first consider the case where x ≤ c − 2r + 1 to prove that the largest
variance is uniquely attained by pairwise heavy imbalanced designs.

• Case 1: mD1(r) ≥ mD(r)
Note that this implies that

∑r
m=0 m×mD1(m) ≥

∑r
m=0 m×mD(m) as mD(m) = 0∀m ∈ [0, r− 1].

Thus, equation (61) implies that mD1(m) = mD(m)∀m ∈ [r] which would imply distribution D1 has
same variance of distinct jobs as that of distribution D which follows from Equation (28) in Theorem
2 as the variance σD,x is just a function of mD(.) other than design parameters n, k, r and c.

• Case 2: mD1(r) < mD(r) but mD1(0) ≥ mD(0)
Let us denote xm = mD1(m) − mD(m) ∀m ∈ [0, r]. Clearly, xm < 0 only for m = r as for every
m ̸= r we have mD(m) = 0.

Observe that equation (48) ensures that
r∑

m=0

xm =
r∑

m=0

m× xm = 0.

Let us denote
r∑

m=1

xm = x. Since
r∑

m=0

xm = 0, we can say that xr = −x.

Thus,

r∑
m=0

xm × g(m,x) =
r−1∑
m=0

xm × g(m,x)− x× g(r, x)

=
r−1∑
m=0

xm × (g(m,x)− g(r, x))
(a)

≤ 0. (62)

Note that (a) follows from the fact that xm > 0 for all m ∈ [0, r − 1] and the fact that g(m,x) is
monotonic in m.

• Case 3: mD1(0) < mD(0) and mD1(r) < mD(r)
Let us denote xm = mD1(m)−mD(m) ∀m ∈ [0, r]. Clearly, xm < 0 only for m = 0, r.

Now equation (61) ensures that
r∑

m=0

m×xm = 0 and
r∑

m=0

xm = 0 Observe that x0+xr = −
r−1∑
m=1

×xm

Now define [ym]
r
m=0 and [zm]

r
m=0as follows below.

– ym = xm × x0

x0+xr
and zm = xm × xr

x0+xr
if 0 < m < r

Also note that ym + zm = xm∀m ∈ [1, r − 1] and also
∑r−1

l=1 yl = −x0 and
∑r−1

l=1 zl = −xr. Thus,
r∑

m=0

mxm = 0 implies

l−1∑
m=1

(r −m)zm =
l−1∑
q=1

q × yq (63)
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Now we can say from Claim 1 that

g(r, x)− g(t, x)

r − t
>

g(t, x)− g(0, x)

t− 0
∀t ∈ [0, r]. (64)

Thus we can say the following from equations (63) and (64) and the fact that xm, ym, zm > 0 for
m ∈ [0, r];

r−1∑
m=1

zm(g(r, x)− g(m,x)) >
r−1∑
q=1

yq(g(q, x)− g(0, x))

⇔(
r−1∑
m=1

zm)g(r, x)−
r−1∑
m=1

(ym + zm)g(m,x) + (
r−1∑
m=0

ym)g(0, x) > 0

(b)⇔− xrg(r, x)−
r−1∑
m=1

xmg(m,x)− x0g(0, x) > 0

⇔
r∑

m=0

xmg(m, r) < 0

⇔
r∑

m=0

mD1(m)g(m,x) <
r∑

m=0

mD(m)g(m,x) (65)

Note (b) follows from ym + zm = xm∀m ∈ [1, r − 1] and also
∑r−1

l=1 yl = −x0 and
∑r−1

l=1 zl = −xr.
Now let us consider the numerator of the first term in σD,x(d) as in theorem 28 which can be written

as 2.
r∑

m=0

mD(m)g(m,x) + n.

(
r−1∑
t=1

t2
(

r
(t+1)

)(
(c−r)

(x−t−1)

))
.

Thus the inequality proven in the previous equation (55) would imply that distribution D1 has a
smaller variance of the number of distinct jobs received at the master than that of distribution D,
thus proving our desired result.
Note that other than Case 1 in this proof (where we show D1 is also a pairwise heavy imbalanced job
assignment), the distribution D1 is not a pairwise heavy imbalanced job assignment and we show strict
optimality of pairwise balanced job design over any other balanced assignment for x ≤ c− 2r + 1.
However, if x ≥ c− 2r + 1, the inequalities still hold but are not strict as it follows from Claim 1.
Combining these statements, we prove the strict optimality (attains least variance )of pairwise balanced
designs for x ≤ c− 2r + 1 and weak optimality for x > c− 2r + 1

■

X. PROOF OF THEOREM 4
To prove this theorem, we first prove Claim 2 and 3. These claims would be used in the proof of

Theorem 4.
We now define a random variable Y D as follows for balanced (n, k, r, c) assignment D as the number

of servers in which a pair of jobs chosen uniformly at random occur together. Formally, we can say that

P[Y D = p] =
mD(p)(

n
2

) for any integer p ∈ [0, r] (66)

Observe that it is a valid distribution as
∑r

p=0 m
D(p) =

(
n
2

)
in Equation (25).

Claim 2. For any balanced (n, k, r, c) assignment D, the variance of Y D is linearly proportional to the
variance of distinct jobs d received at master when any 2 servers chosen uniformly at random return i.e.
are able to communicate their results to the master. We can also state it as follows.
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σD,2(d) =

(
n
2

)
.σ(Y D) +

(c(k2))
2

(n2)
+ n.

((
r
2

))
− c.

((
k
2

))
(
c
2

) −

(
n
(
r
2

)(
c
2

) )2

(67)

Observe for n = c, we can say that σ(Y D) = σD,2(d)

Proof. Consider the numerator of first term in σD,x(d) in Equation (28) which had been shown to be

2.
r∑

m=0

mD(m)g(m,x) + n.

(
r−1∑
t=1

t2
(

r
(t+1)

)(
(c−r)

(x−t−1)

))
.

Note that here we consider x = 2 as we consider the case when any 2 servers return.

Thus the first term in numerator of σD,2(d) becomes 2.
r∑

m=0

g(m,x) + n.

(
r−1∑
t=1

t2
(

r
(t+1)

)(
(c−r)
(1−t)

))
.

Now, observe that g(0, x) =
r+1∑
i=2

r+1∑
j=2

(i−1).(j−1).
(

(c−2r)
(x−i−j)

)
.
(
r
i

)
.
(
r
j

)
from Equation (17). For x = 2, we can

show that it goes to 0 as g(m, 2)−g(m−1, 2) reduces to [(n− 2)− 2(n− k − 1) + (n− 2k +m− 1)] =
m−1 from Equation (23) in Theorem 2. Thus we can argue that g(m, 2) = 1+2+ . . .+m−1 = m(m−1)

2
.

Thus for x = 2,

2.
r∑

m=0

mD(m)g(m, 2) + n.

(
k−1∑
t=1

t2
(

r

(t+ 1)

)(
(c− r)

(2− t− 1)

))

=
r∑

m=0

mD(m)m(m− 1) + n.

(
r

2

)
(a)
=

r∑
m=0

m2mD(m) + n

(
r

2

)
− c

(
k

2

)

(a) follows since
r∑

m=0

mmD(m) = c
(
k
2

)
in Equation (26).

Now consider

σD,2(d) =

2.
r∑

m=0

mD(m)g(m, 2) + n.

(
k−1∑
t=1

t2
(

k
(t+1)

)(
(n−k)
(1−t)

))
(
c
2

) −

n
r−1∑
t=1

t
(

r
(t+1)

)(
(c−r)
(1−t)

)
(
c
2

)


2

=

r∑
m=0

m2.mD(m) + n.
(
r
2

)
− c.

(
k
2

)
(
c
2

) −

(
n
(
r
2

)(
c
2

) )2

(68)

We can observe that E[Y D] =
∑r

m=0 mmD(m)

(n2)
=

c(k2)
(n2)

as
r∑

m=0

mmD(m) = c
(
k
2

)
[equation (26)] using the

definition of Y D in Equation (66).

σ(Y D) =E[(Y D)2]− (E[Y D])2

=
1(
n
2

) r∑
m=0

m2mD(m)−

(
c
(
k
2

)(
n
2

) )2

(69)

Thus, using Equations (69) and (68), we prove Claim 2.
■
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We now prove a lemma showing that the set of pairwise balanced job assignments is identical to the
set of pairwise balanced server assignments when the number of jobs and the servers are identical.

Claim 3. Amongst balanced (n, k, k, n) assignments, every pairwise balanced (n, k, k, n) job assignments
is also a pairwise balanced server assignment and vice-versa.

Proof. Consider the set of balanced (n, k, k, n) assignment schemes. Now recall the definition of y from
Claim 2 where y denoted the number of servers where a pair of jobs chosen uniformly at random occurs
together and for n = c and k = r, we have

σD,2(d) = σ(Y D). (70)

Now we can compute that the E[Y D] =
n(k2)
(n2)

which follows since every server has exactly
(
k
2

)
pairs of

jobs since each server is balanced (and is assigned k jobs) and we have exactly n servers. However, we
have exactly

(
n
2

)
total number of pairs of jobs hence this equality of expectation on y holds true. Also,

observe from Theorem 6 (under x = 2, n = c and k = r ) that

ED,2[d] = n

(
1− k(k − 1)

n(n− 1)

)
=

(
2k − k(k − 1)

n(n− 1)

)
= ED[2k − Y D] (71)

We first show that every pairwise and balanced job assignment is also a pairwise balanced server
assignment scheme.

Suppose not and consider a balanced assignment scheme D which is pairwise job balanced but not
pairwise server balanced. Now let us consider the scenario where x = 2 (exactly 2 randomly chosen
servers) are able to communicate with the master. Now suppose D is not a pairwise balanced server
design which implies that d (the number of distinct jobs received) can take at least 2 distinct integral
values when x = 2 which are non-consecutive, hence 2k − d also has a support of at least 2 distinct
non-consecutive integral values. However the random variable Y D has a support of at most 2 over two
consecutive indices(since it is a pairwise job-balanced design). Now observe that random 2k− d and Y D

have the same expectation (shown above in Equation (71)). Thus, the variance of 2k − d is clearly more
than that of Y D which is a contradiction from Equation (70).

Now we consider the other case where a balanced assignment scheme is a pairwise server balanced but
not pairwise job balanced. Consider the scenario where x = 2 (exactly 2 randomly chosen servers) are
able to communicate with the master. Since the number of distinct jobs received at the master can take
exactly 2 values (as it is pairwise server balanced), thus, the random variable 2k − d has a support of
2 over two consecutive indices. Suppose the assignment scheme is not pairwise job balanced hence Y D

has a support of at least 2 elements which are non consecutive. Now observe that random variables Y D

and 2k− d have the same expectation in (71), hence the variance of Y D has to be clearly larger than that
2k − d which is a contradiction from Equation (70).

Thus, we show that the set of balanced balanced job designs is identical to the set of pairwise balanced
server designs.

■

Now we restate and prove Theorem 4.

Theorem. The least variance of the number of distinct jobs received at the master for any x ∈ [1, c−2r+1]
is attained uniquely by both the pairwise balanced server (n, k, k, n) assignment schemes and pairwise
balanced job (n, k, k, n) assignment schemes (if it exists) amongst all balanced (n, k, k, n) assignments.

Proof. This directly follows from Theorem 3 and Claim 3. ■
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XI. CONSTRUCTIONS OF PAIRWISE BALANCED DESIGNS:
In general, these types of constructions can be done using balanced incomplete block designs as

explained in [1]. In these type of construction, treatments are divided into blocks so that each block
has the same number of treatment and each treatment occurs exactly the same number of times. However
in balanced block constructions we also ensure that every pair of treatments occur together in the same
number of blocks. Using theorem 3 we can say that it would have the least variance amongst distributions
satisfying Definition 2 for a given n, k, r and c.

Various methodologies of balanced block constructions have been proposed in [1], [3]. The famous
Bruck-Ryser-Chowla theorem gives some necessary condition on n, k, c, r so that it might be possible to
have a balanced symmetric design.

We discuss one construction from [1] using vector spaces.

A. Construction using vector sub-spaces
Let us discuss such a construction. Choose a finite field vector space of dimension N , Let us denote

each job as the subspaces of this vector space of dimensionality K = 1. Also we denote each server
as a subspace of dimensionality C (C > 1). Now only those jobs are present in a server such that the
vector-space corresponding to a job is the subspace of the vector-space denoting the corresponding server.

Note that the number of jobs and server is same since number of subspaces of dimensionality N −K
is same as the number of subspaces of dimensionality K. Also by geometry we can show that each
sub-space of dimensionality K has a fixed number of sub-spaces of dimensionality N − K. Thus both
conditions in Definition 2 are satisfied.

In this construction, every pair of jobs must occur together in exactly the same number of servers and
also every pair of servers have the same number of common jobs thus, it is both a pairwise balanced job
and pairwise balanced and pairwise balanced server assignment scheme. Thus, according to Theorem 3,
it attains the least variance on the distinct number of jobs received at the master.

However such constructions are only possible from n = qa−1
q−1

, k = qb−1
q−1

, c =
[
a
b

]
q

where
[
a
b

]
q

denotes
the number of b-dimensional subspace of a-dimensional space on a finite field of order q where q is the
power of a prime. This holds true for some positive integer a and q is a power of some prime number
since the cardinality of finite fields can also be a power of some prime number.

B. Construction using 2-D spread of points
Note this construction is somewhat similar to the planar construction you had described for n = 9, k = 3

case. We can generalise it for any n = a.b (using a field for Fa), k = a and a < b such that a is a power
of some prime number say p and b is a multiple of a

p
.

We could also do a similar construction for n = a.b, k = b, a > b such that a is a power of some
prime number say p and b is a multiple of a

p
.

Recall that these constructions were done by treating the jobs as points and servers were treated as lines.
Since these lines are constructed on a finite field, no two lines would have more than one job common.

Thus every pair of servers intersect in at-most one point, thus theorem 3 would imply that it has the
least variance for every x.

XII. CONSTRUCTION OF HEAVY PAIRWISE IMBALANCED JOB ASSIGNMENT SCHEMES

We present a construction for the case when r divides c. We present an assignment scheme based on
a repetition coding scheme. We divide the servers in c/r groups of r servers each. In the first group of r
servers, we assign each such server jobs numbered from a1 to ak. In the next set of r servers, we assign
it jobs numbered from ak+1 to a2k and we repeat this assignment scheme till all servers are exhausted.

Formally, a server si×r+j is assigned jobs from ak×i+1 to ak×(i+1) for every i ∈ [0, c
r
− 1] and every

j ∈ [0, r]. Observe that such a design is balanced as every job is assigned to r servers and every server has
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precisely k jobs. Also observe that in this construction, a pair of jobs either occur together in r servers or
do not occur together at all, thus presenting a construction of a heavy pairwise imbalanced job assignment
scheme.
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