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Abstract
We consider a generalization of the recently proposed gradient coding framework where a large dataset is divided

across n workers and each worker transmits to a master node one or more linear combinations of the gradients over
the data subsets assigned to it. Unlike the conventional framework which requires the master node to recover the sum
of the gradients over all the data subsets in the presence of s straggler workers, we relax the goal of the master node
to computing the sum of at least some α fraction of the gradients. The broad goal of our work is to study the optimal
computation and communication load per worker for this approximate gradient coding framework. We begin by deriving
a lower bound on the computation load of any feasible scheme and also propose a strategy which achieves this lower
bound, albeit at the cost of high communication load and a number of data partitions which can be polynomial in the
number of workers n. We then restrict attention to schemes which utilize a number of data partitions equal to n and
propose schemes based on cyclic assignment which have a lower communication load. When each worker transmits a
single linear combination, we also prove lower bounds on the computation load of any scheme using n data partitions.

I. Introduction
In a distributed computing framework, a job is divided into multiple parallel tasks, which are computed on different

servers, and the job is finished when all the tasks are complete. In this framework, a subset of workers can be arbitrarily
slow as compared to the rest of the workers. These subset of workers are referred to as stragglers. Since the slowest
tasks determine the job execution time, they form a bottleneck to the efficient execution of the job. Recently, there
has been an extensive amount of work to mitigate the effect of stragglers by introducing redundancy in the computed
tasks using coding theoretic techniques. The distributed computing applications for which codes have been designed
include matrix-vector multiplication [1], matrix-matrix multiplication [2], [3], gradient computation [4], polynomial
computation [5] and coded convolution [6]. A fundamental trade-off between computation and communication cost was
established in [7], for the case of general distributed data shuffling problem.

A. Gradient Coding
In various machine learning applications, a principal task is to compute the gradient sum on large datasets. Hence,

gradient sum computation is a natural application for distributed computing. Consider a dataset of d points over which
the gradient sum of a certain objective function needs to be computed. In the case of uncoded computing, the data set
is divided into n data subsets. Each worker computes a partial gradient on the data subset assigned to it and returns
the results to the master node. The master computes the full gradient sum by combining the results. However, this
scheme is not efficient when there are stragglers amongst the n worker nodes. Towards addressing this issue, Gradient
Coding was proposed in [4], which ensures efficient distributed gradient computation even in the presence of stragglers
by utilizing coding-theoretic techniques. For any scheme which is tolerant to s stragglers, a lower bound of s + 1 on
the computation load per worker was derived. Optimal gradient coding schemes, which achieve the lower bound with
equality, were provided based on fractional repetition and cyclic assignments of data subsets.
The scheme based on cyclic assignment of data subsets in [4], is based on a random coding argument and hence the

result is existential in nature. Explicit gradient coding schemes based on cyclic MDS codes over complex numbers and
on Reed Solomon codes were designed in [8] and [9] respectively. When gradient sum computation can be formulated
as a multivariate polynomial evaluation problem, the Lagrange coded computing scheme has been proposed in [5].
Communication-efficient gradient coding was introduced in [10] where the master node has to recover a gradient sum
vector and it proposes coding across the elements of the gradient vector to reduce the number of transmitted symbols.
Multi-message communication based gradient codes allow for multiple messages to be transmitted from workers to
the master in each round and have been studied in [11], [12] which use this capability to utilize the work done by
non-persistent stragglers. Heterogeneity-aware gradient coding was introduced in [13], where in addition to stragglers,
heterogeneous non-straggling workers have been considered. The problem of distributed linearly separable computation
has been introduced in [14]. Distributed linear transforms and gradient computation are special cases of this problem.



B. Approximate Gradient Coding
The above works consider the objective of exactly recovering the gradients sum in the presence of stragglers and as

mentioned before, a fundamental converse argument in [4] finds that this requires the per worker computation load to
scale linearly with the straggler tolerance level. Several works have found that for many practical distributed learning
applications, it suffices to approximately recover the gradient sum [15]–[20]. Gradient coding schemes which trade-off
the computation load and the `2 error between the actual full gradient and the computed full gradient, have been
studied in [8], [21]–[23]. In this work, we consider the setting of gradient coding with partial recovery in which the
gradient computed at the master is required to be the sum of at least α fraction of the data subsets. This is a different
form of approximation as compared to that considered in previous works on gradient coding mentioned above and
such forms of approximate gradient recovery have found application in distributed learning algorithms [15], [16]. A
similar objective function was also studied recently in [12], [24], [25], where the goal was to design strategies which
benefit from both uncoded and coded computing schemes, and extensive numerical simulations were done to illustrate
the advantages of allowing partial recovery. Finally, we would like to point out that while [21] studied approximate
gradient coding in terms of `2 error, their gradient code construction based on Batched Raptor codes can in fact be
applied to the partial recovery framework being studied here as well. However, the guarantees are probabilistic in
nature, where the randomization is on the set of stragglers whereas our focus here is on the deterministic worst-case
setup as proposed for the original gradient coding problem [4].

C. Our Contributions
For the gradient coding with partial recovery framework, we give a lower bound on the computation load at each

worker, which is independent of the number of data subsets. We provide two schemes which achieves this bound with
equality, the second having marginally better communication load than the first for a subset of parameters. Though
these schemes have minimum computation load, they have high communication load and require partitioning into a
large number of data subsets. We give another class of cyclic gradient codes with the number of data subsets being
equal to the number of workers in which every worker transmits at most two linear combinations of the gradients of the
data subsets assigned to it, but has a slightly higher computation load. We also give a lower bound on the computation
load per worker of any scheme with the number of data subsets being equal to the number of workers when each worker
transmits one linear combination.

II. Problem Formulation
Consider a dataset D consisting of features-label pairs {(xi, yi)}di=1 with each tuple (xi, yi) ∈ Rp×R. Several machine

learning problems wish to solve problems of the following form:

β∗ = arg min
β∈Rp

d∑
i=1

L(xi, yi;β) + λR(β)

where L(.) is a task-specific function and R(.) is the regularisation function. Often this problem is solved using
gradient-based iterative approaches by computing the gradient at each step using the current value of the model β(t).

Let g(t) :=
d∑
i=1
∇L(xi, yi : β(t)) be the gradient of the loss function computed at tth step and the model parameter

is updated as β(t+1) = hR(β(t), g(t)) for some suitable mapping hR. As the size d of the dataset becomes large, the
computation of the gradient g(t) can become a bottleneck and one possible solution is to parallelize the computation
by distributing the task across multiple workers.

We consider a gradient coding framework with n workers denoted by W1,W2, ...,Wn and a master node. The entire
data setD is divided into k equal partitionsD1, D2, .., Dk and let {gl} denote the partial gradients1 over the data subsets
{Dl}. Each worker i computes m ≥ 1 linear combinations of {gl} given by (coded partial gradient) g̃i = [g̃i1; g̃i2; ...; g̃im]

with g̃ij =
k∑
l=1

Aij,l ·gl for each j ∈ [m], and transmits them to the master node. Let Ai ∈ Rm×k denote the computation

matrix corresponding to worker i with its (j, l)th entry given by Aij,l. We define the communication load and computation
load of the gradient coding scheme described above.

Definition II.1. (Communication Load): For a gradient coding scheme specified by {Ai}, we define the communication
load as m where m denotes the number of coded partial gradients transmitted by each worker.

1We drop the superscript t in the gradient notation for convenience



Definition II.2. (Max. Computation Load per worker): For a gradient coding scheme with communication load m
and specified by {Ai}, we define the load per worker by l = 1

k .max
i∈[n]
|
⋃

j∈[m]
supp(Aij)| where supp(Aij) denotes the set of

non-zero entries in the jth row of Ai.

The data subsets assigned to a worker Wi is {Dv : v ∈
⋃

j∈[m]
supp(Aij)}. Note that we define the computation load

relative to the total number of partitions k of the entire data set. On the other hand, the communication load m is
not normalized since the size of each worker transmission is independent of the number of data subsets k.

We will refer to a gradient coding scheme with n workers, k data subsets, communication load m, and maximum
computation load per worker l as an (n, k,m, l) gradient coding (GC) scheme. In conventional gradient coding schemes,
the goal of the master node is to recover the sum of the partial gradients {gi} over all the k data subsets {Di} in the
presence of straggler worker nodes. We now define a new framework in which the requirement for the master is relaxed
to being able to recover the sum of a certain fraction of the partial gradients.

Definition II.3. ((α, s)-feasible (n, k,m, l) gradient coding (GC) schemes): For α ∈ (0, 1], 1 ≤ s ≤ n, we call an
(n, k,m, l) gradient coding scheme as (α, s)-feasible if the master node is able to compute

∑
i∈I

gi for some I ⊆ [k],

|I| ≥ αk whenever any n− s workers are able to successfully communicate their results to the master node .

Thus, if an (n, k,m, l) GC is (α, s)-feasible, then it can tolerate s stragglers out of the n workers. Also, note that for
α = 1 the above definition reduces to that of conventional gradient codes. Finally, we will restrict attention to linear
schemes here and thus for such a scheme, there must exist a vector v ∈ {0, 1}k with ||v||0 ≥ α.k in the span of the
rows of {Ai}i∈I for every |I| ≥ n− s.
Our goal in this work is to analyze the minimum communication load (m) and computation load per worker (l)

for (α, s)-feasible (n, k,m, l) GC schemes. One naive strategy to create such a GC scheme is to select some α.k data
partitions out of D and then use a conventional (full) gradient coding scheme to recover the sum of gradients over the
α.k data partitions while allowing for any set of s workers to straggle. Such a schemes would have a communication
load of 1 and a lower bound of α(s+ 1)/n on the max. computation load per worker [4]. In this work, we will propose
(α, s)-feasible (n, k,m, l) GC schemes that have far lower max. computation load per worker.

III. Lower bound on the computation load
We begin by proving a lower bound on the computation load per worker l for any (α, s)-feasible (n, k,m, l) GC

scheme.

Theorem 1. For any (α, s)-feasible (n, k,m, l) GC scheme and y = dn.le, we have(
s
y

)(
n
y

) ≤ 1− α. (1)

The inequality in (1) implies a lower bound on y = dnle and for a scheme which assigns the same load to each
worker, y denotes the average number of copies for each data subset stored across the n workers. Note that while the
above lower bound is dependent on the parameters n, s, and α, it is independent of the number of data subsets k and
communication load m. Also, for α = 1 which corresponds to the conventional gradient coding setup, the lower bound
above reduces to y ≥ s+ 1 as obtained in [4, Theorem 1].

To prove Theorem 1, we will first derive an intermediate condition given in the following lemma.

Lemma 1. Consider any (α, s)-feasible (n, k,m, l) GC scheme and let yi denote the number of distinct workers which
are assigned the data subset Di. Then, the following condition holds:

k∑
i=1

(
n− yi
n− s

)
≤
(
n

s

)
k(1− α). (2)

Proof. Consider all possible subsets of size s of the set of n workers and denote these subsets by {Sj} for j ∈ [
(
n
s

)
].

Now consider any data subset Di for some i ∈ [k] and let Ei denote the set of workers it is assigned to. From the
statement of the lemma, we have |Ei| = yi. From the definition of an (α, s)-feasible (n, k,m, l) GC scheme, we have
that each subset of (n− s) workers should have access to at least α fraction of the datasets, and thus for each subset
Si of size s there can be at most k(1− α) subsets Ej such that Ej ⊆ Si.



For each j ∈ [
(
n
s

)
], let kj = |{Ei|i ∈ [k];Ei ⊆ Sj}|, whose sum we bound in the following argument. From the

argument above,
∑

j∈[(ns)]

kj ≤
(
n

s

)
k(1− α). On the other hand, each set Ei is a subset of exactly

(
n−yi
s−yi

)
subsets Sj for

j ∈ [
(
n
s

)
]. Thus, we get

k∑
i=1

(
n− yi
n− s

)
=

∑
j∈[(ns)]

kj ≤
(
n

s

)
k(1− α), completing the proof.

Now, we will use Lemma 1 to prove Theorem 1.

Proof of Theorem 1. Consider any (α, s)-feasible (n, k,m, l) GC scheme and let yi denote the number of distinct workers
which are assigned the data subset Di. From the definition of the max. load per worker l, we have

∑
i∈[k] yi ≤ n.k.l

since each worker can be assigned at most k.l data subsets. Furthermore, we have
∑k
i=1
(
n−yi
n−s

)
≤
(
n
s

)
k(1 − α) from

Lemma 1.
Now define b = b

∑k

i=1
yi

k c and k1 = (b+1)k−
∑k
i=1 yi, thus from the claim 1, k1

(
n−b
n−s
)
+(k−k1)

(
n−b−1
n−s

)
≤
∑k
i=1
(
n−yi
n−s

)
since

∑k
i=1(n− yi) = k1× (n− b) + (k−k1)× (n− b−1) and n− b−1 = b

∑n

i=1
(n−yi)
k c. The L.H.S is the smallest when∑k

i=1 yi = n× k × l since a increases with
∑
yi and k1 decreases with

∑
yi when a is constant. Thus, the inequality

reduces to k
(
n−b−1
n−s

)
≤
∑k
i=1
(
n−yi
n−s

)
≤
(
n
s

)
k(1− α) where a = bn.lc because

(
n−b−1
n−s

)
≤
(
n−b
n−s
)
which proves Theorem 1.

Claim 1. Consider any collection of t positive integers {ai}1≤i≤t. Define a = b
∑t

i=1
ai

t c and let t1 be the unique positive
integer satisfying

∑
ai = t1.a+ (t− t1)(a+ 1). Then we have

∑t
i=1
(
ai
r

)
≥ t1.

(
a
r

)
+ (t− t1).

(
a+1
r

)
.

IV. (α, s) feasible (n, k,m, l) GC schemes with least computation load
The following theorem shows that lower bound on computation load in Theorem 1 is achievable, albeit at high

communication cost.

Theorem 2. For every n, s, α and 1 ≤ y ≤ n satisfying (sy)
(ny)
≤ 1 − α, there exists an (α, s)-feasible (n,

(
n
y

)
,
(
n−1
y−1
)
, yn )

GC scheme.

Proof. We divide the full dataset D in to k =
(
n
y

)
data subsets and index them by subsets of [n] of size y, and for

each S ⊂ [n], S = {i1, i2, . . . , iy}, let data subset DS be assigned to workers Wi1 ,Wi2 , . . . ,Wiy . Thus, each worker
would be assigned

(
n−1
y−1
)
data subsets and the computation load per worker l = (n−1

y−1)
(ny)

= y
n . Each worker would then

directly compute and individually transmit the gradients for all the data subsets assigned to it, which results in a
communication load m =

(
n−1
y−1
)
. Next, we argue the correctness of this scheme.

Under any set of s stragglers, the number of data-parts which are not assigned to any worker other than these set
of s stragglers is given by

(
s
y

)
. Thus, the master node can obtain the sum of at least

(
n
y

)
−
(
s
y

)
gradients which is at

least α.
(
n
y

)
= αk since (sy)

(ny)
≤ 1− α. Thus the above mentioned scheme is an (α, s)-feasible GC scheme.

We now show that the communication load can be slightly improved in some scenarios without incurring a penalty
on the computation load per worker.

Theorem 3. For every n, s, α and 1 ≤ y ≤ n which is co-prime with n and satisfies (sy)
(ny)
≤ 1 − α, there exists an

(α, s)-feasible (n,
(
n
y

)
, 1 + y−1

y .
(
n−1
y−1
)
, yn ) GC scheme.

Proof. We assign data subsets to different workers in the same way as described in the proof of Theorem 2 and thus
the number of data partitions k and the computation load per worker l remain the same. Let Ij ⊂ [n], |Ij | = y denote
the indices of the y workers to whom data subset Dj is assigned. For each data subset Dj , we choose a worker Wtj

from amongst the workers that data subset Dj is assigned to, i.e., tj ∈ Ij ∀j ∈ [
(
n
y

)
]. This is done while ensuring

that the process is balanced, i.e., each worker is chosen exactly the same number of times and thus we have ∀ i ∈ [n],
|Bi| = |{j : j ∈ [

(
n
y

)
] s.t i = tj}| =

(
n−1
y−1
)
/y. Such an allocation is possible whenever y is co-prime with n and the

details are provided in Appendix B. Next, each worker Wi transmits to the master node the sum of all the gradients
assigned to it and in addition, individually transmits the gradients corresponding to all the data subsets assigned to
it except those in Bi. Thus the communication load of this scheme is given by 1 + y−1

y

(
n−1
y−1
)
.

We now describe the decoding procedure at the master node and argue the correctness of the scheme in the presence
of at most s stragglers. Denote the set of non-straggler worker nodes by I ⊆ [n] with |I| ≥ n − s. Since the data



D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
W1 1× 1× 1X 1X
W2 1X 1× 1× 1X
W3 1X 1X 1× 1×
W4 1× 1X 1X 1×
W5 1× 1× 1X 1X

TABLE 1
Assignment of data subsets (marked by 1X and 1×) to different workers in ( 7

10 , 3) feasible (5, 10, 3, 2
5 ) GC scheme with data

subsets marked by 1X having the corresponding gradients being directly transmitted by each corresponding worker.

subset assignment to the workers is identical to the one used in the proof of Theorem 2, we know that the number of
gradients which are computed by at least one worker in I is greater than αk = α

(
n
y

)
. Thus to prove that the scheme is

an (α, s)-feasible GC, it suffices to show that using the transmissions from the non-straggling worker nodes, the master
node can recover the sum of the gradients corresponding to all data subsets assigned to them.

Recall that each non-straggler worker node in I transmits the sum of all its computed gradients in addition to some
individual gradients. The master node adds up the sum transmissions from all nodes in I and then uses the individual
gradient transmissions to suitably adjust the coefficients so that the sum of all the involved gradients can be recovered.
Let D1,I denote the collection of data subsets which are assigned to exactly 1 worker amongst the non-straggling
workers I. Clearly, the gradient of each such data subset in D1,I would have its coefficient as 1 in the above sum at
the master node. Now consider the gradients of those data subsets which appeared more than once in the sum. Each
such data subset must have been assigned to more than one worker in I and thus at least one worker in I would be
directly transmitting the gradient of that data subset as per the scheme designed above. Thus, the master node can
subtract an appropriate multiple of any such gradient from the sum calculated above and we can thus recover the sum
of the gradients corresponding to all data subsets assigned to the non-straggling workers I.

Example 1. An example for n = 5, α = 7/10 and s = 3 is shown below as described above in proof of Thm 3. The
smallest y satisfying (sy)

(ny)
≤ 1− α can be shown to 2. Since n and y are co-prime we can achieve a communication load

of 1 + y−1
y

(
n−1
y−1
)

= 3. The assignment of different data subsets to various workers is given in Table 1. Recall that under
this scheme each worker Wi transmits the sum of the gradients of data subsets it is assigned and individually transmits
gradients corresponding to those data subsets except those in Bi. For each worker Wi, the data subsets assigned to it
which belong to Bi has been denoted by 1× and the data subsets assigned to it but don’t belong in Bi has been denoted
by 1X.
For example, workerW1 transmits the sum of the gradients of the data subsets D1, D2, D3 and D4 and individually the

gradients of the data subsets corresponding to data subsets D3 and D4. For example if workers W3, W4 and W5 straggle,
the master can still compute the sum of gradients of subsets D1 to D7, D4 , D6, D7 and D1 using the transmissions by
the workers W1 and W2. The master can compute the sum of the sum of the gradients transmitted by the workers W1
and W2 and subtract the gradient of the data subset D1 which is transmitted by worker W2.
Note that the scheme which just assigns only α fraction of data sets to the workers can be shown to have a lower bound

on the max computation load per worker to be α(s+1)
n = 0.56. Our scheme has a max. computation load per worker to

be 2
5 which is lower.

V. Cyclic (α, s)-feasible GC schemes
In the previous section, we presented two schemes which achieves minimum computation load at the cost of high

communication load and large number of data partitions. In this section, we will consider (α, s)-feasible GC schemes,
when the number of data subsets is restricted to n (the number of workers) and the assignment of data subsets is
cyclic. We are interested in the cyclic assignment based GC schemes because they have been shown to be optimal for
the case of gradient coding with full recovery [4], [8]. Also, for the case of gradient coding with partial recovery, random
cyclic shift based schemes have been proposed in [12], though their optimality has not been shown. We provide two
schemes based on cyclic assignment of data subsets of workers. The first scheme requires that the parameters of the
GC scheme satisfy a certain divisibility criterion, in which case we show that there exists an (α, s)-feasible GC scheme
with a communication load of 1. We then show that whenever the divisibility criterion is not met, cyclic schemes
cannot achieve the desired computation load, when the communication load is 1. Finally, we show that there exists an
(α, s)-feasible cyclic GC scheme with a communication load of 2, for all parameters.



Workers D1 D2 D3 D4 D5 D6 D7
W1 1 1 1
W2 1 1 1
W3 1 1 1
W4 1 1 1
W5 1 1 1
W6 1 1 1
W7 1 1 1

TABLE 2
Assignment of data subsets to different workers in ( 6

7 , 3) feasible (7, 7, 1, 3
7 ) GC scheme

Definition V.1. (Cyclic GC scheme): We define a (n, n,m, l) GC scheme as a cyclic GC scheme if worker W1 is
assigned the data subsets from D1 to Dl×n, worker W2 is assigned the data subsets from D2 to Dl×n+1 and in general
worker Wi is assigned the data subsets from Di to D1+((l×n+i−2) mod n).

Theorem 4. There exists an (α, s)-feasible (n, n, 1, s+1+β−n
n ) cyclic GC scheme with β = dα.ne for every n, s, α if

s+ 1 + β − n divides β.

Proof. We follow the assignment scheme as described in Definition V.1 and each worker is assigned exactly s+1+β−n
data subsets. Each worker transmits the sum of the gradients of all the data subsets assigned to it.

To show that the scheme is (α, s)-feasible, we show that we can recover the sum of β = dα.ne data subsets in the
presence of any s stragglers. Based on the straggler pattern, we pick a subset of n − s non-straggling workers of size
β
r , such that r data subsets assigned to these workers are mutually disjoint. We give an algorithm to identify these
workers in Appendix 4.

Example 2. An example for n = 7, α = 6/7 and s = 3 is described below. The assignment of different data subsets
to various workers is done using a cyclic GC scheme as described in the proof of Theorem 4 given in Table 2. Each
worker transmits the sum of the gradients of data subsets it is assigned. For example, worker W4 transmits the sum of
the gradients of the data subsets D4, D5 and D6. For example if workers W1, W4 and W5 straggle, the master can still
compute the sum of gradients of subsets D2, D3, D4 , D6, D7 and D1 using the transmissions by the workers W2 and
W6.
Note that the scheme which just assigns only α fraction of data sets to the workers can be shown to have a lower

bound on the computation load per worker to be α(s+1)
n = 24/49 as in [4, Theorem 1]. Also the cyclic scheme described

in [4] has computation load per worker to be 4
7 . Our cyclic GC scheme has the computation load per worker as 3/7 with

a communication load of 1 which has smaller computation load than the two GC schemes described above. However we
can achieve a smaller computation load using the scheme as described in the proof of Theorem 3 which would have a
max. computation load per worker y

n = 2/7 though with a higher communication cost of 1 + y−1
y

(
n−1
y−1
)

= 4.

The following theorem shows that if s+ 1 + β − n does not divide β, no (α, s) feasible (n, n, 1, s+1+β−n
n ) cyclic GC

scheme exists.

Theorem 5. There exists no (α, s) feasible (n, n, 1, s+1+β−n
n ) cyclic GC scheme if s+1+β−n does not divide β where

β = dα.ne and β ≤ n− 1.

Proof. Suppose there exists an (α, s) feasible (n, n, 1, s+1+β−n
n ) cyclic GC scheme, thus each worker has access to

exactly v = s+ 1 + β − n data subsets. Consider any 2 set of consecutive data subsets Di and D1+(i mod n). Choose
a set of s− 1 consecutive workers from W1+((i−s) mod n) to Wi−1 and another worker Wi+1 and straggle them. Since
the master should be able to compute a sum of atleast β gradients from the results received from each worker except
the set of s workers defined above, the coefficient of the gradients of data subsets Di and D1+(i mod n) transmitted
by worker Wi have to be the same. This is because the master has access to exactly β + 1 gradients and the gradient
of data subsets Di and D1+((i) mod n) is computed only by Wi amongst the set of non-straggling workers.
Using a very similar line of argument, we can show that the coefficient of the gradients of data subsets corresponding

to Di and D1+(i mod n) transmitted by any other worker which has access to both of them must also be the same.
This can be argued for every i ∈ [n]. This would imply that each worker just transmits the sum of all the gradients
assigned to it as per the cyclic GC scheme discussed above.

Now suppose the set of non-straggling workers is denoted by W1,W2, ..Wn−s. Clearly under these set of workers the
master would have access to exactly gradients of β data subsets. Suppose we denote the first row of the matrix Ai for



i = 1, 2..., n − s as vi. Since the master node should be able to compute the sum of the gradients of first β data-sets
from transmissions by workers W1,W2, ..Wn−s, v = [1, 1, ..1︸ ︷︷ ︸

β

, 0, 0, ..0︸ ︷︷ ︸
n−β

] must lie in the span of {vi}. Also note that vector

vi has consecutive ones from position i to (1 + ((i+ r − 2) mod n)) for r = s+ 1 + β − n rest all zeroes.
Suppose v =

∑
i civi for some ci ∈ R. This would imply that c1 = 1,c2 = 0,...,cs+1+β−n = 0 ,cs+2+β−n =

0,..c2s+2+β−n = 0 and so on. More generally, ci = 1 if i mod r = 1 else 0 where r = s + 1 + β − n. Now we
can substitute the {ci} in the equation v =

∑
i ci and observe that it can’t be satisfied if s+ 1 + β−n does not divide

β. Thus the master cannot recover the sum of β data subsets and hence such a cyclic GC scheme is not (α, s) feasible

However, we can show that a cyclic (α, s) feasible cyclic (n, n, 1, s+1+β−n
n ) GC scheme is always possible under a

communication load of 2.

Theorem 6. There exists an (α, s) feasible (n, n, 2, s+1+β−n
n ) cyclic GC scheme with β = dα.ne for every n, s, α.

Proof. If s+ 1 + β − n divides β, then the scheme described in proof of Theorem 4 achieves a communication load of
1. Else consider the following scheme described below.

We follow the assignment scheme as described in Definition V.1 and each worker is assigned exactly s + 1 + β − n
data subsets. Each worker transmits the sum of the gradients of all the data subsets assigned to it and the sum of first
x data subsets assigned to it where x denotes the remainder when β is divided by s+ 1 + β − n. For example worker
W1 transmits the sum of the gradients of the data subsets from D1 to Ds+1+β−n and the sum of the gradients of the
data subsets from D1 to Dx.

Workers D1 D2 D3 D4 D5 D6 D7 D8 D9
W1 1 1 1
W2 1 1 1
W3 1 1 1
W4 1 1 1
W5 1 1 1
W6 1 1 1
W7 1 1 1
W8 1 1 1
W9 1 1 1

TABLE 3
Assignment of data subsets to different workers in ( 7

9 , 4) feasible (9, 9, 2, 3
9 ) GC scheme

Example 3. An example for n = 9, α = 7/9 and s = 4 is described below. Note that s+ 1 + β−n = 3 and the division
of β = 7 by 3 gives remainder x = 1. The assignment of different data subsets to various workers can be described
as follows: Note that each worker transmits the sum of the gradients of the data subsets it is assigned to and the first
gradient computed by each. The assignment of data subsets to various workers has been shown in Table 3 For example,
worker W4 transmits the sum of the gradients of the data subsets D4, D5 and D6 and the gradient of the data subset
D4. For example if workers W2, W4 and W5 straggle, the master can still compute the sum of gradients of data subsets
D2, D3, D4 , D6, D7 D8 and D1 using the transmissions by the workers W1, W3 and W6. We use transmission of the
gradient of data subset D1 by worker W1, the sum of the gradients of D3, D4 and D5 by worker W3 and the sum of
the gradients of D6, D7 and D8 by worker W6. Note that the scheme which just assigns only α fraction of data sets to
the workers can be shown to have a lower bound on the max computation load per worker to be α(s+1)

n = 35/81. Also
the cyclic scheme as in [4] also has a max. computation load per worker to be 5

9 . Our cyclic GC scheme has a max.
computation load per worker as 3/9 with a communication load of 2 which is better than the two cyclic GC schemes
described above. However we can achieve a smaller computation load using the scheme as described in Sec IV which
would have a max. computation load per worker y

n = 2/9 though with a higher communication cost of 1 + y−1
y

(
n−1
y−1
)

= 5.

VI. (α, s)-feasible (n, n, 1, l) GC schemes under low computation load
In this section, we consider the problem of partial gradient recovery under the restriction of k = n data subsets, and

focus on the regime with communication load m = 1 and a small computation load l. We begin with a simple lemma
about the case of l = 1/n which is the minimum possible computation load.

Lemma 2. For any (α, s)-feasible (n, n, 1, 1
n ) GC scheme, we have s ≤ n− β for β = dα.ne. Furthermore, there exists

a simple (α, s = n− β)-feasible (n, n, 1, 1
n ) GC scheme.



Proof. For l = 1/n, each worker is assigned at most one data subset and thus when there are s stragglers, the master
node can hope to recover the sum of the gradients corresponding to at most n−s data subsets. Then from the definition
of an (α, s)-feasible GC scheme, we have α.n ≤ n− s which in turn implies s ≤ n− dα.ne. Finally, the trivial scheme
which assigns a unique data subset to each worker node and each non-straggler node simply computes and transmits
the corresponding gradient to the master node is indeed (α, n− dα.ne)-feasible.

The next two results consider the impact of allowing for more stragglers on the computation load l.

Theorem 7. For β = dα.ne, consider any (α, s = n− β + 1) feasible (n, n, 1, l) GC. Then the following hold true.
• If β is even and β ≤ n−1, then l ≥ s+1+β−n

n = 2
n . Furthermore, there exists a cyclic scheme which achieves l = 2

n .
• If β is odd and β ≤ n− 1, then l > s+1+β−n

n = 2
n .

Proof. The first half of the first statement follows from Theorem 1 by showing that inequality (1) is unsatisfied when
y = 1. The existence of a cyclic scheme for even β with l = 2/n can be shown using Theorem 4. Finally, the proof of
the second part of the theorem can be found in Appendix E.

Theorem 8. For β = dα.ne and β ≤ n − 1, consider any (α, s > n − β + 1) feasible (n, n, 1, l) GC. Then l >
(n−β+1)+1+β−n

n = 2
n .

The proof of this result can be found in Appendix F.

VII. Discussion
For the exact gradient coding setup, it is known that the minimum computation load of (s+ 1)/n and the minimum

communication load of 1 can be achieved simultaneously [4]. For the partial gradient recovery framework discussed
here, while we have shown that unlike exact gradient recovery there exists a trade-off between the computation and
communication loads when restricting to cyclic schemes which use a number of data subsets equal to n, in general
the question remains open. Also, we assume each transmission message to be of a fixed size (gradient dimension p)
and define communication load as the number of messages transmitted by each worker. Allowing splitting of gradient
vectors and coding across their components as done in [10] to reduce the individual message sizes is another direction
for future work.
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Note that for the proofs in the upcoming appendix, we denote [n] as the set of consecutive integers from 1 to n.
Also we denote the remainder when b divides a by a%b or a mod b

Appendix A
Proof details of Claim 1

We restate and prove the claim 1 used in the proof of Theorem 1.

Claim. Consider any collection of t positive integers {ai}1≤i≤t. Define a = b
∑t

i=1
ai

t c and let t1 be the unique positive
integer satisfying

∑
ai = t1.a+ (t− t1)(a+ 1). Then we have

∑t
i=1
(
ai
r

)
≥ t1.

(
a
r

)
+ (t− t1).

(
a+1
r

)
.

Let us state the claim that we use to prove theorem 1.

Proof. (
x+m1

r

)
−
(
x

r

)
=

m1∑
i=1

(
x+ i− 1
r − 1

)
(
x+ 1
r

)
−
(
x−m2 + 1

r

)
=

m2∑
i=1

(
x− i+ 1
r − 1

)
These follow from

(
n
r

)
+
(
n
r+1
)

=
(
n+1
r+1
)
. Since

(
x+i−1
r−1

)
≥
(
x−j+1
r−1

)
for any 0 ≤ i ≤ m1, 0 ≤ j ≤ m2, we can say

(x+m1+1
r )−(x+1

r )
m1

≥ (x+m1
r )−(xr)
m1

≥ (x+1
r )−(x−m2+1

r )
m2

≥ (xr)−(x−m2
r )

m2
Choose the list I as follows: {i ∈ [t] : ai > a + 1} and list J as {i ∈ [t] : ai < a}. Now choose a partition of I s.t

I = I1 ∪ I2 and I1 ∩ I2 = Φ and J s.t J = J1 ∪ J2 and J1 ∩ J2 = Φ s.t |I1 ∪ J1 ∪ {i ∈ [t] : ai = a + 1}| = t − t1. This
would imply |I2 ∪ J2 ∪ {i ∈ [t] : ai = a}| = t1



Now denote kmin = min
m1>1

(x+m1
r )−(xr)
m1

and kmax = max
m2>1

(x+1
r )−(x−m2+1

r )
m2

, thus kmin ≥ kmax
Thus, ∑

i∈I1

[(ai
r

)
−
(
a+ 1
r

)]
+
∑
i∈I2

[(ai
r

)
−
(
a

r

)]
(a)
≥
∑
i∈I1

[(ai − 1
r

)
−
(
a

r

)]
+
∑
i∈I2

[(ai
r

)
−
(
a

r

)]
≥kmin(

∑
i∈I1

(ai − a− 1) +
∑
i∈I2

(ai − a))

∑
i∈J1

[
(
a+ 1
r

)
−
(
ai
r

)
] +

∑
i∈J2

[
(
a

r

)
−
(
ai
r

)
]

(b)
≤
∑
i∈J1

[
(
a

r

)
−
(
ai − 1
r

)
] +

∑
i∈J2

[
(
a

r

)
−
(
ai
r

)
]

≤kmax(
∑
i∈J1

(a− ai + 1) +
∑
i∈J2

(a− ai))

Note (a) follows from the fact that
(
x+m1+1

r

)
−
(
x+1
r

)
≥
(
x+m1
r

)
−
(
x
r

)
and (b) follows using similar reasoning.

Now

∑
i

ai = t1.a+ (t− t1).(a+ 1)

(a)=⇒
∑
i∈I1

ai +
∑
i∈I2

ai +
∑
i∈J1

ai +
∑
i∈J2

ai = a.(|I2|+ |J2|) + (a+ 1).(|I1|+ |J1|)

=⇒
∑
i∈I2

(ai − a) +
∑
i∈I1

(ai − a− 1) =
∑
i∈J2

(a− ai) +
∑
i∈J1

(a+ 1− a1)

Note that (a) follows from the fact that |I1 ∪ J1 ∪ {i ∈ [t] : ai = a+ 1}| = t− t1 and |I2 ∪ J2 ∪ {i ∈ [t] : ai = a}| = t1
Since we prove previously that kmin ≥ kmax, we argue that

∑
i∈I1

[(ai
r

)
−
(
a+ 1
r

)]
+
∑
i∈I2

[(ai
r

)
−
(
a

r

)]
≥
∑
i∈J1

[
(
a+ 1
r

)
−
(
ai
r

)
] +

∑
i∈J2

[
(
a

r

)
−
(
ai
r

)
]

=⇒
∑

i∈I1∪I2∪J1∪J2

(
ai
r

)
≥ |I1 + J1|.

(
a+ 1
r

)
+ |I2 + J2|.

(
a

r

)
(a)=⇒

∑
i

(
ai
r

)
≥ t1.

(
a

r

)
+ (t− t1).

(
a+ 1
r

)
Note (a) follows from the fact that |I1 ∪ J1 ∪ {i ∈ [t] : ai = a+ 1}| = t− t1 and |I2 ∪ J2 ∪ {i ∈ [t] : ai = a}| = t1 and

definitions of I and J .

Appendix B
Proof details of Theorem 3

A. Construction
Let us re-index each data subset by the set of worker indices it is assigned to. For example, data subset DTJ is

assigned to workers indexed by set J . Consider all possible subsets containing 1 and order them in lexicographic
order for example sets {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {1, 3, 5}} are some subsets of cardinality 3 sorted
in lexicographic order. Two sets I and J s.t I, J ∈ [n] differ by a cyclic shift if J = {1 + (y+ a− 1)%n|y ∈ I} for some
a ∈ [n].

Consider the first distinct 1
y

(
n−1
y−1
)
subsets of cardinality y of [n] with each subset containing 1 such that no two

subsets differ by any cyclic shift. Let us denote this collection of sets by P1. Now choose worker W1 corresponding
to all data subsets DTJ ∀J ∈ P1. Thus, in other words tTJ = 1 ∀J ∈ P1. Recall from the proof of Theorem 3 that



worker Wtj is chosen for data subset Dj such that tj belongs to the indices of the j workers to whom data subset Dj

is assigned.
Now let us define the set P2. Increment each element in every subset of P1 by 1 with rollover to 1 if crosses n to

obtain P2. Formally we denote P2 = {{1 + (u mod n)|u ∈ J}|J ∈ P1}. Similarly we choose worker W2 corresponding
to all data subsets DTJ ∀J ∈ P2. In general, we define the subset Px ∀x ∈ [n] by increasing each element of P1 by x−1
with rollover to 1 if the sum crosses n. Formally we denote Px = {{x − 1 + (u mod n)|u ∈ J}|J ∈ P1}. Similarly we
choose worker Wx corresponding to all data subsets DTJ ∀J ∈ Px.
Let us work out an example for the case of n = 7 and y = 4. Note that n and y are co-prime.

Example 4. The distinct
(
n−1
y−1
)

= 20 subsets in lexicographic order containing 1 can be written as {{1, 2, 3, 4}, {1, 2, 3, 5},
{1, 2, 3, 6}, {1, 2, 3, 7}, {1, 3, 4, 5}, ...{1, 5, 6, 7}}. However observe that the subsets {1, 2, 3, 4} and {1, 2, 3, 7} differ by a
cyclic shift of 6 and the subsets {1, 2, 3, 6} and {1, 3, 4, 5} also differ by a cyclic shift of 5. Thus we choose the set P1 as
{{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6}, {1, 3, 4, 6}, {1, 3, 4, 7}}, similarly we define the set P2 as {{2, 3, 4, 5}, {2, 3, 4, 6}, {2, 3, 4, 7}
, {2, 4, 5, 7}, {2, 4, 5, 1}} by incrementing each element in each set of P1 by 1 and thus set P7 is defined as {{7, 1, 2, 3}, {7, 1, 2, 4}
, {7, 1, 2, 5}, {7, 2, 3, 5}, {7, 2, 3, 6}} and hence we choose worker W1 corresponding to data subsets which are assigned
to the set of workers indexed by sets in P1. Similarly we choose worker W2 corresponding to data subsets which are
assigned to the set of workers indexed by sets in P2 and so till sets in P7.

B. Proof that the above construction works
Clearly no two subsets in any set Pi can be identical since they have been obtained by incrementing every element

in distinct subsets in P1 by i− 1.
We first show that there can be no element in both Pi and Pj for i 6= j. Let us prove it by contradiction by assuming

that there exists a subset J in both Pi and Pj . Suppose J was obtained in set Pi by shifting elements of subset A in
P1 by i − 1 and J was obtained in set Pj by shifting elements of another subset B by j − 1. Thus, subset B can be
obtained from A by shifting each element of A by j − i which is a contradiction since both A and B are consecutive
distinct lexicographic subsets containing 1.

Let us consider the other case if subset J is obtained in set Pi and set Pj by shifting elements of the same subset A
by i−1 and j−1 respectively. Thus shifting elements of subset J by j− i gives the same subset. Consider the smallest
element a such that shifting elements of J by a− 1 gives the same subset J . Suppose the (1 + (t+ r− 1)%y)th element
of J be equal to tth element of the list obtained after shifting elements of J by a ∀t ∈ [n]. Let us denote the elements
of J as [j1, j2, ..jy] where j1 < j2 < .. < jy. This would imply that

∑r
z=1 j1+(t+z−1)%r = a − 1 for every integer t i.e.

any consecutive set of r elements element has the sum to be a− 1.
Suppose y is not a multiple of r. Suppose not and say the remainder when r divides y is given by q, then we can

argue that
∑q
z=1 j1+(z+t−1)%r remains the same for all t clearly the sum of which is smaller than a − 1, thus there

would exist an integer smaller than a say b such that shifting elements of J by b gives the same subset J .
Thus y is a multiple of r say y = r.m, hence n =

∑y
z=1 jz = m.

∑r
z=1 jz = m.(a − 1) since any the sum of any set

of r consecutive elements remain the same. Thus n and y have the same factor implying they are not co-prime.
Thus, we proved that no two elements of two distinct sets Pi and Pj can be the same. Since the sum of cardinalities

of all subsets {Pi} is n
y

(
n−1
y−1
)

=
(
n
y

)
implying that each worker is chosen exactly the same no of times i.e 1

y

(
n−1
y−1
)
and

there is a worker chosen for every data subset.

Appendix C
Correctness argument of the construction proposed in Theorem 4

Recall the construction from the proof of Theorem 4 where Wi contains the data subsets Di, Di+1, ..D1+(i+r−2)%r
where r = s + 1 + β − n. Let the workers denoted by W1, ...,Wβ be grouped into r groups each group containing β

r

workers. Let us denote the groups by {Aj}j∈[r]. Suppose group Aj contains the β
r workers Wj ,Wj+r, ...Wj+β−r which

ensures that no one worker is present in two different groups. Note that worker denoted by Wi belongs in group Af(i)
where f(i) = 1 + (i− 1)%r.

Consider the set of straggling workers be denoted by S s.t |S| = s. Suppose there exists a group Ai with no straggling
worker present, this would imply the existence of βr workers with disjoint set of data subsets implying the master would
be able to calculate the sum of β gradients from the results computed by the non-straggling workers.
Suppose there does not exist a group Ai without any straggling worker present in it i.e each group has at least one

straggling worker present.
Note that worker Wi returned from Alg 1 would have no worker Wj in Af(i) s.t j < i and Wj ∈ S.
Now consider the entire set of groups visited in the algorithm described as I. We can argue if I = x+ 1, there must

exist at least x workers Wj satisfying j < i and Wj ∈ S (at least one worker from each of the x rows). Also note that
there must be at least one straggling worker corresponding to each of (r− x− 1) groups which were not visited in the



Algorithm 1: Stopping Straggler 1
Choose largest i ∈ [β] s.t i ∈ S.
while ∃ v < i s.t Wv ∈ Af(i) and Wv ∈ [S] do

Choose largest j < i s.t Wj ∈ S.
i =j

end
Output i.

algorithm since each group has at least one straggling worker. Note that each of these workers must have its index
smaller than i, thus there would exist at least (r − x− 1) + x = r − 1 workers behind Wi.
Now consider worker Wi in group Af(i) and suppose we have m workers Wj s.t. j ≥ i and Wj ∈ Af(i). Suppose we

denote all the workers in group Af(i) as Wi1 , ...,Wi β
r

, thus i = i β
r−m+1 = f(i) + (βr −m)r

We now claim there must exist at least a vector of integers [k1, k2, ..., km] with these indices lying in the set of indices
of non-straggling workers satisfying

kt − kt−1 ≥ r∀i ∈ [m− 1], , k1 ≥ i
km ≤ n+ f(i)− r (3)

Note that the conditions mentioned above would ensure that no overlap between the data subsets assigned to workers
Wi1 ,Wi2 , ...,Wi β

r
−m
,Wk1 , ...,Wkm .

The minimum size of set Z s.t there is no solution of {kv}v∈[m] satisfying kv /∈ Z∀v ∈ [m] and (3) is given by
(n+ f(i)− r)− i− (m− 1).r + 1 = n+ f(i)−m× r − i+ 1 = n+ f(i)−m× r − f(i) + (βr −m)r + 1 = n− β + 1
However, the number of straggled workers Wj s.t j ≥ i is at most s− r + 1 = n− β which would imply that there

exists at least a vector [k1, ..., km] satisfying (3), thus proving the existence of a set of β
r non-straggling workers such

that the data subsets assigned to them don’t overlap.
We give two examples of sets of stragglers to demonstrate the proof strategy mentioned above and describe two sets

of stragglers for n = 18 and β = 15 and s = 7

Example 5. Recall that the set of workers is given by W1,W2, ...,W18. Suppose the set of straggling workers is denoted
W15, W13, W10, W8, W4, W12 and W11. Note that the group A1 would contain the workers W1, W6 and W11, the group
A2 would contain the workers W2, W6 and W12 and so on and finally the group A5 contains the workers W5, W10 and
W15. First it is important to note that each group has at least one straggling worker.
Note that the largest indexed straggling worker amongst the first fifteen is 15. Thus i is initialised to 15. However

there is a straggling worker with a smaller index 10 in the same group A5, hence we set i get to 13. Again, since there
is another straggling worker with index 8 in the group A3, we set i as 12. However, since there is no straggling worker
with smaller index in group A2, we return 12 Note that W12 has exactly 4 stragglers with indices smaller than 12 none
of them being in the group. Note that m is 1 in this case and we can choose k1 as 14 (belonging to set of non-straggling
workers) satisfying (3). Thus we obtain the can use the transmissions by workers W2,W7 and W14 to obtain the sum of
15 gradients.

Example 6. Recall that the set of workers is given by W1,W2, ...,W18. Suppose the set of straggling workers is denoted
W14, W13, W9, W8, W6, W7 and W5. Note that the group A1 would contain the workers W1, W6 and W11, the group
A2 would contain the workers W2, W6 and W12 and so on and finally the group A5 contains the workers W5, W10 and
W15. Also observe that each group has at least one straggling worker.
Note that the largest indexed straggling worker amongst the first fifteen is 14. Thus i is initialised to 14. However there

is a straggling worker with a smaller index 9 in the same group A4, hence we set i get to 13. Again, since there is another
straggling worker with index 8 in the group A3, we set i as 8 as there is no straggling worker with index larger than 8.
Note that W8 has exactly 4 stragglers with indices smaller than 8 with none of them being in the group A3. Note that
m equals 2 in this case and we can choose k1 = 10 and k2 = 15 (belonging to set of non-straggling workers) satisfying
(3). Thus we obtain the can use the transmissions by workers W3,W10 and W15 to obtain the sum of 15 gradients.

Appendix D
Correctness argument of the construction proposed in Theorem 6

Recall that worker Wi contains the data subsets Di, Di+1, ..D1+(i+r−2)%r where r = s + 1 + β − n. Note that we
denote the remainder by x when r divides n. Let the workers denoted by W1, ...,Wγ be grouped into r groups each



group containing γ
r workers where γ = β − x which clearly divides r. Let us denote the groups by {Aj}j∈[r]. Suppose

group Aj contains the γ
r workers Wj ,Wj+r, ...Wj+γ−r which ensures that no one worker is present in two different

groups. Note that worker denoted by Wi belongs in group Af(i) where f(i) = 1 + (i− 1)%r.
Consider the set of straggling workers be denoted by S s.t |S| = s.

Algorithm 2: Stopping Straggler 2
Choose largest i ∈ [γ] s.t i ∈ S.
while ∃ k < i s.t Wk ∈ Af(i) and Wj ∈ [S] do

Choose largest j < i s.t. Wj ∈ S.
i=j

end
Output i.

Note that worker Wi returned from the Algorithm 2 would have no worker Wj in Af(i) s.t j < i and Wj ∈ S.
Now consider the entire set of groups visited in the algorithm described as I. We can argue if I = z + 1, there must

exist at least z workers Wj satisfying j < i and Wj ∈ S (at least one worker from each of the x rows). Suppose there
exists m workers Wj s.t j ≥ i and Wj ∈ Af(i) and we denote all the workers in group Af(i) as Wi1 , ...,Wi γ

r

, thus
i = i γ

r−m+1 = f(i) + (γr −m)r. We consider two cases i.e. when each group {Ai} has at least one-straggling worker
and when there exist groups without any straggling worker.

Case I: There does not exist any group without any straggling worker.
Since the algorithm visited exactly (z + 1) distinct groups implying the existence of exactly (r − z − 1) groups which
are not visited each of which must have at least one straggling worker with index smaller than i. Thus there exist at
least (r − z − 1) + z = r − 1 workers with index smaller than i. Now consider the smallest index u larger than i such
that Wu is a non-straggling worker.
We now claim there must exist at least a vector [k1, k2, ..., km] satisfying

kt − kt−1 ≥ r, , k1 ≥ u+ x

km ≤ n+ f(i)− r (4)

Note that the conditions mentioned above would ensure that no overlap between the sum of all the r data sub-
sets transmitted by the workers Wi1 ,Wi2 , ...,Wi γ

r
−m
,Wk1 , ...,Wkm and the data subset of first x gradients transmit-

ted by the worker Wu. Note that a key difference in this approach is that the data subsets assigned to workers
Wi1 ,Wi2 , ...,Wi γ

r
−m
,Wk1 , ...,Wkm and Wu may overlapping unlike the proof of Theorem 4.

Recall from the definition of γ that γ = β − x.
The minimum size of set Z s.t there is no solution of {kv}v∈[m] satisfying kv /∈ Z∀v ∈ [m] and (4) can be shown to

be n+ f(i)− r− (u+x)− (m−1)r+ 1 = n+ f(i)− (u+x)−m× r+ 1 = (n−u) + (i−β) + (f(i)− i+γ)−m× r+ 1 =
(n− u) + (i− β) + 1.
However note that sinceWu is the smallest index non-straggling worker larger than i, there are at least u−i straggling

workers from Wi to Wu. However, since the total number of stragglers starting from Wu+x is (s− (r − 1)− (u− i) =
−β + n− u+ i which is clearly smaller than the minimum size needed to ensure no solution of (4).
Thus we can recover the desired sum of β gradients from the transmission of sum of r gradients by the workers

Wi1 ,Wi2 , ...,Wi γ
r

−m
,Wk1 , ...,Wkm and the sum of x gradients by worker Wu

Case -II: There exist groups {Aj}j∈[r] with no straggling workers in any of these groups.
Case II-(a): The largest and the smallest indices of groups without any straggling worker differ by at

least x.
Under this assumption, we can argue that there would exist a set of γr + 1 workers such that the first x data-subsets
of the one worker would be non-overlapping with all the data subsets of the other γ

r workers.
Case II-(b): The largest and the smallest indices of such groups without any straggling worker differ

by a quantity smaller than x.
Suppose the set of all such indices is denoted by J with |J | = t. Since it is a cyclic scheme and cyclic shifts in data
subsets assigned to workers don’t make any difference, we assume the smallest and largest index of J to be 1 and a
where a < x+ 1.

Now consider Bw = Aw ∪ {Ww+(γ)}∀w ∈ J and w ≥ r − x Note that since the largest and the smallest index of J
differ by a quantity smaller than x, there can be any common worker between two distinct subsets Bi and Bj i, j ∈ J .
Also note that w + γ ≤ n since w ≤ x and n ≥ β.



Suppose there exists w ∈ J s.t no worker in Bw straggles, then choose the master can recover the sum of β gradients
by the sum of r gradients of workers Aw and the sum of first x gradients transmitted by Ww+γ .
Suppose there does not exist any worker w ∈ J s.t no worker in Bw straggles. In this case, each worker inWw+(γ)∀w ∈

J must straggle as the other workers in Aw∀w ∈ J don’t straggle. Choose the largest element in J which has been
assumed to be a in this case and thus consider the worker Wa+γ . The worker with index i has clearly smaller index
than all workers in Ww+(γ)∀w ∈ J . Also we know there are at least (r− z− 1) + (z− t) = (r− t− 1) straggled workers
with indices smaller than i. Thus we have (r− t− 1) + 1 + (t− 1) = r− 1 straggled workers with indices smaller than
a + γ. We denote the workers in group Aa as {Wa1 ,Wa2 , ...,Wa γ

r

} Using a very similar argument as in Case D, we
can show that there would exist z satisfying z − a γ

r
≥ r and z ≤ n + a − x with Wz being a non-straggling worker.

This can be argued from the fact the number of straggling workers with indices larger than or equal to a γ
r
is at most

(s− r+ 1) = (n− β) since the number of stragglers with index less than a γ
r
is at most r− 1. Thus we can recover the

desired sum of β gradients from the transmission of sum of r gradients by the workers Wa1 ,Wa2 , ...,Wa γ
r

and the sum
of x gradients by worker Wz.

Appendix E
Proof of Theorem 7

Proof. Let us prove by contradiction. Suppose we have l = 2
n i.e. every worker transmits and computes a linear

combination of gradients of at most two data subsets.
We represent every data subset as a node in the graph. Since every worker can be assigned at most 2 data subsets,

we denote it as an edge between the two corresponding nodes if it indeed transmits a linear combination of two data
subsets; else we represent it as a self-loop around the node corresponding to the data subset assigned to it. We divide
the problem into two cases (described below) and prove it for each case. Also note that the second case is the most
general case.
• We assume a uniform distribution of two data subsets to every worker with each data subset being assigned to at

exactly two workers. Thus, the graph consists of disconnected components with each component being a cycle.
• We assume the graph consists of one or more disconnected components.
Case-I: The graph consists of disconnected component with each component being a cycle.
Since every gradient is being computed by two workers, each node must be present in two edges. Also note that we

have n edges and n nodes, thus the graph must be comprised of disjoint cyclic components with each component being
a cycle. There could be a pair of isolated nodes with a pair of edges connecting them which we treat as a connected
cyclic component only like the component C in the Fig. 1.

Let us denote the sizes(vertices/edges) of the components by c1, c2, ...ct if there are t such components with
∑
ct = n

W.L.OG, we assume c1 ≤ c2 ≤ c3... ≤ ct. Let p denote the smallest index such that
∑p
i=1 ci ≥ s+ 1.

Fig. 1. Representation as data subsets as nodes with numbers denoting nodes and letters denoting components

Note that the lines on edges denoting the straggling workers in the diagram.
We state the following claim and use it for the proof of the theorem.



Claim 2. If the above gradient code is (α, s = n− β + 1) feasible where β = dnαe, then each worker must transmit the
sum of the gradients of the data subsets assigned to it,

Proof. We divide the proof into two parts - for edges in cycles with size larger than or equal to s and cycles with size
smaller than s.
Case (a): Consider any edge in some component with size larger than or equal to s+ 1.

For simplicity, we denote the size of this component by x and the node of this component is A1, A2, ..., Ax and the
edges are A1−A2, A2−A3, ...Ax−A1. We assume the edge corresponding to this worker as A1−A2. Now we consider
the case when workers corresponding to edges Ax−A1,A2−A3, A3−A4,...,As−As+1 straggle- for example the cut in
component A. In this case clearly the gradients to data subsets A3, .., As won’t be accessible to the master at all, thus
these s − 2 gradients cannot be present in the sum computed by the master, thus the master has access to at most
(β + 1) gradients with data subsets corresponding to A1 and A2 being present in exactly one non straggling worker.
Since the master has to compute the sum of at least β gradients, the coefficient of the gradients corresponding to data
subsets A1 and A2 in the worker which transmits their linear combination has to be the same.

Case (b) : Consider an edge in some component r of size smaller than or equal to s.
For simplicity, we denote the size of this component by x and the node of this component is A1, A2, ..., Ax and the
edges are A1 −A2, A2 −A3, ...Ax −A1.
Let pmin be the minimum index of i such that

∑i
j=1;j 6=r ci ≥ s− x+ 1 and plast = s− x+ 1−

∑pmin−1
j=1;j 6=r ci.

Thus, we straggle the following s workers-
• All workers in the first pmin − 1 components excluding component numbered r.
• Exactly plast continuous edges of component ci like the cut shown in component B.
• All edges except A1 −A2 in component numbered r example - component D in the diagram.
Now we can observe that the master won’t have access to s − x + x − 2 = s − 2 gradients if the above set of s

workers straggle. Thus the master has access to at most (β + 1) gradients with data subsets corresponding to A1 and
A2 being present to only one non-straggling worker. Since the master has to compute the sum of at least β gradients,
the coefficient of the gradients corresponding to data subsets A1 and A2 in the worker which transmits their linear
combination has to be the same.
Thus, we prove that the coefficients of the gradient of each data subset in each worker must be the same without

assuming β is odd.

However, we show that if β is odd, this construction cannot yield the desired sum of the gradients at the master.
We know that the sizes of the components are c1, c2, ..., ct with

∑
t ct = n and choose d1, d2, ..., dn such that

∑
t dt = s

with di = ci∀1 ≤ i < m for some m, dm ≤ cm and di = 0 ∀i ≥ m+ 1. The selection of stragglers show that the master
won’t have access to at least s − 1 gradients. None of the gradients corresponding to any of data subsets present in
any of the first m− 1 workers can be computed by the master.

Suppose cm − dm is odd, then there there must exist some i ≥ m + 1 s.t (ci − di) is odd as
∑
i≥m+1(ci − di) =

β−1− cm−dm which is odd. Thus, we assume cj to be odd for some j ≥ m+ 1 as dj = 0∀j ≥ m+ 1. Now we decrease
dm by 1 and set dj to 1. Note that this ensures that

∑
dt remains s. Now let us define the s workers which straggle.

All the workers corresponding to the edges in the first m− 1 components straggle and a set of continuous dm edges in
component numbered m straggle and continuous dj edges in component numbered j straggle.

Consider component numbered m. The workers which don’t straggle correspond to a set of continuous cm−dm edges
which is even and hence only a sum of cm − dm gradients could be obtained corresponding to that cycle. An example
demonstrating the fact is shown in Fig. 2 and Fig. 3. In Fig. 2, if each worker transmits the sum of data-subsets
assigned to it, we recover all the sum of gradients of data subsets spanned by it through transmissions from workers
W1 and W3. However in Fig. 3, if each worker transmits the sum of data-subsets assigned to it, we cannot recover
all the sum of gradients of all data subsets spanned by it through transmissions. We can at most recover the sum of
gradients of data subsets A1 and A2 or A2 and A3 since the number of workers is even.

Similarly in component numbered j, there are exactly cj − dj workers corresponding to a set of continuous edges
which don’t straggle. Either the workers which don’t straggle form the entire set of edges in the cycle in which case
we obtain the sum of gradients corresponding to all the data subsets in the cycle, or the workers which don’t straggle
form a continuous set of even edges potentially excluding one edge in the cycle in which case only a sum of ct − dt
gradients corresponding to the data subsets in the cycle can be computed.

For any other cycle numbered i > m if no worker is straggled we can obtain the sum of gradients of all the data
subsets representing the nodes in the cycle i.e. a sum of gradients of ci − di = ci data subsets.

Thus, we could obtain a sum of gradients of exactly
∑t
i=m+1 ci − di = n− s = β − 1 data subsets which contradicts

the requirement that the master should compute a sum of gradients of at least β data subsets.



Fig. 2. A continuous set of odd number of edges
Fig. 3. A continuous set of even number of edges

Case II: Suppose the above graph is composed of t distinct disconnected components.
Suppose the edges of acyclic components is given by set E1.We denote an order of removing edges in E1 such that

no new disconnected component is created at an step. Note that such an ordering can be ensured if we remove edges
starting from a leaf node. Also observe that since no new disconnected component is created and only edges in acyclic
components are removed, removal of t edges would ensure at most n− t nodes in its span since no new disconnected
component is created in the process.
Now after these edges are removed, consider the largest set of edges (and self-loops) (denoted by set E2) that can

be removed so that each component has at least one cycle. Note that these edges would be removed in order such that
no new disconnected component with one or more isolated edges is created in the process of removal of edges thus,
ensuring at most n − t nodes in the span of n − t remaining edges in every step. Thus, after removal of |E1| + |E2|
edges, we would have distinct components with each component being a cycle.
Note that cuts on edges Fig. 4 denotes the edges in sets E1 and E2 in order described above with n = 28. Also E1

corresponds to edges numbered 1-7 and E2 corresponds to edges numbered 8-14. Also note at no stage while removing
edges in the order as numbered is a new disconnected component created with one or more isolated edges.

Thus, the maximum number of edges (or self-loops) that can be removed without reducing the number of cycles
in the graph is denoted by cmax = |E1| + |E2|. Note that after removal of |E1| + |E2| edges, we would have distinct
components with each component being a cycle. Let us now consider three different conditions on s(maximum number
of stragglers) and prove it in each case.

Case II-(a): s ≤ cmax = |E1|+ |E2|

Since the process of removing edges in each step ensures that exactly n− t nodes lie in the span of remaining n− t
edges, we can just straggle the workers corresponding to the first s edges in the process described above and argue
that exactly n− s = β − 1 data-subsets are accessible to the master, thus leading to a contradiction.

Note that if we start straggling the workers corresponding to the edges in order ensure that no new disconnected
component is created after the straggling workers are removed from the graph. Thus, removal of v edges would ensure
at most n− v nodes in the span of remaining edges. This would follow from the fact that each component continues to
have exactly one cycle. Such an ordered removal of edges can be done if we remove edges along a path starting from
a leaf node to a cycle.

Hence, if the total number of straggling workers is less than or equal to the maximum number of edges that can be
removed without affecting any cycle, we can argue that no more than n − s = β − 1 nodes can lie in its span, thus
implying the master cannot compute the sum of β gradients from the set of non-straggling workers.

Case II-(b): s ≥ cmax + 2 = |E1|+ |E2|+ 2

Under this constraint we first straggle all the edges corresponding to E1∪E2 to obtain a similar structure of distinct
cycles as the situation in Case E. We now proceed in a very similar way as in Case E and show that there exist
a set of stragglers such that the master cannot compute the sum of any set of β gradients. Note that, we require
s ≥ cmax + 2 = |E1|+ |E2|+ 2 since the previous case also assumes at least 2 stragglers since s = n− β + 1 ≥ 2 with
β ≤ n− 1.

Case II-(c): s = cmax + 1 = |E1|+ |E2|+ 1



Fig. 4. Representation as data subsets as nodes with numbers denoting nodes and cuts denoting removal of edges

Suppose there are more than 2 vertices in a cycle into which paths from leave nodes branch into. Well in this case,
actually we can show that all workers corresponding to every edges in the cycle would have the same coefficient for
both the data subsets. Suppose A1, A2, A3 be three consecutive nodes in the cycle and from each node there exists a
cyclic path to a leaf node. Now we straggle the entire path to a leaf node from A2, the edge Ap−A1 (assuming p nodes
in the cycle) and edge A2 −A3, the entire path from a leaf node to A3 except the edge which connects it to the cycle.
Using these set of stragglers we can show that the worker corresponding to the edge A1 −A2 has same coefficient for
both the data subsets. Similarly, we can argue that the workers corresponding to all edges have the same coefficient
for both the workers and a similar selection of stragglers will show that no sum of β gradients exists in the linear span
of non-straggling workers.

Suppose there are at most two vertices in the cycle into which paths from leaf nodes merge into. In this case, there
might be at most two edges in the cycle the workers corresponding to which may not have the same coefficient for the
gradients of the data subsets assigned to them.

Suppose there exists only a path to node A1 in the cycle to a leaf node of length cmax, thus in this example we can
show that all workers except those corresponding to edges A1−A2 and An−A1 have the same coefficient for both the
gradients of the data subsets assigned to it.

Now if p(the edges in cycle) is odd, straggle the workers corresponding to the edges in the path from A1 to leaf
node and the edge A1 − A2. We can show that since an even number of consecutive edges remain in the component
after straggling the edges we cannot have a sum of all the gradients of the data subsets contained in the span of the
edges corresponding to non-straggling workers. Since β data subsets remain in the span after the selection of straggling
workers, we cannot have any sum of β gradients in its span.
Suppose p is even, straggle the workers corresponding to the edges in the path from A1 to leaf node and the edge

A1 − A2. Now the number of edges remaining in this component is odd which would imply that there must exist
some other non-straggling cyclic component with odd number of edges as the total number of non-straggling edges
is n − s = β − 1 which is even. Also there must exist a cyclic component after removal of cmax edges which has an
odd number of edges. Thus instead of straggling node A1 −A2, straggle a node in another cyclic component with odd
number of edges and the same argument as above follows. Similarly, we can argue for the other cases too if two nodes



in a cycle have paths from leaf nodes branching into it.

Appendix F
Proof of theorem 8

Proof. Let us prove by contradiction. Suppose we have l = 2
n i.e. every worker transmits and computes a linear

combination of gradients of at most two data subsets.
We represent every data subsets as a node in the graph. Since every worker can be assigned at most 2 data subsets,

we denote it as an edge if it indeed transmits a linear combination of two data subsets, else we represent it a self-loop
around a node corresponding to the data subset assigned to it.

Suppose the graph is represented in t distinct components and suppose u components have no cycle in it. There
might be some components with multiple cycles in it too. Now we define an order of straggling workers. First start with
those components which don’t have any cycle and straggle the workers corresponding to those edges which start from a
leaf edge and straggle workers continuously along a path. Note that this process would ensure that no new component
is created when the edges corresponding to straggling workers are removed from the graph, thus at most n− t nodes in
the span when t edges are removed. Now consider the maximum number of edges that can be removed (corresponding
workers straggled) such that each cyclic component continues to have at least one cycle. Note that we straggle these
edges in order such that no new component is created in the process of removing edges from the graph. This would
ensure that there is at most n− t nodes in the span of remaining edges when t workers are straggled (removed) from
the graph. At the end, we would have only cyclic components remaining. Straggle the edges in each cycle continuously
till no edge in a cycle is left and then start with the next cycle. We stop when there is no worker is left.

Note that in this process of straggling, when n−v edges corresponding to workers are remaining we can have atmost
n− v+ 1 vertices or data subsets being spanned. This can be argued from the fact that unless we break a new cycle a
data subset is always removed from the span whenever a worker is straggled and no distinct component of the graph is
being created in the process of straggling (removing) workers. Thus straggling of s workers under the above mentioned
process would ensure at most n− s+ 1 ≤ β − 1 data subsets being accessible at the master implying a contradiction.
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