Accelerator Module Report

Name - Sahasrajit Sarmasarkar Roll no- 160070010

October 2019

1 Introduction

An accelerator module was built which takes an input 32x32 image and a 4x4
kernel each of which built as a 16 bit unsigned integer. The dot products were
computed on each of the first 29 rows and 29 columns with the 4x4 kernel. We
could represent it as the following where p takes the values from 0 to 28 and q
takes the values from

3 3
Up,g = Z Zx(p+i),(q+j) * ki

i=0 j=0

The image and kernel both are written on a shared memory by the external
environment. After the image is written onto the shared memory the status
register the shared memory is updated. The accelerator checks the status onto
the shared memory through polling and once the status is updated by the ex-
ternal environment, the accelerator fetches the image and kernel from memory
onto its internal storage and starts its dot product computation.

After the computation is done, it overwrites the original image on the shared
memory location and updates the status register in shared memory location.
The environment also checks the status register through polling and once com-
putation is done it fetches the resultant 29x29 image and then once again writes
the new set of image and kernel.

The accelerator is initially in idle mode which starts its operations once data
is written on accelerator pipe.

2 Block Diagram with functionality

Memory
request
pipe)

Mem (Read/Wiite) »| engine | muliple | engine
request pipe i | fetcher | TRIEAEF | executor
(Readwrite) Shared memory < TExecior|

Environment contains image, confroler ﬁ
kernel and status
rggister Internal memaory
<I__!——: (part of image

Memory and kemel)

response Memory

response

ceelerator
pipe

Figure 1: Block Diagram

2.1 Memory Access

For writing/reading onto the memory, blocking pipes are used.

Whenever a read request is sent onto the memory read pipe with desired
address, the shared memory block sends the required data back through the
memory response pipe.

However whenever a write request is sent onto the memory no data is written
onto the memory response pipe.

Both reading and writing is done pixel by pixel where pixel position is to be
provided.

This is true for both the environment and accelerator.

2.2 Accelerator module

This module consists of multiple engines - namely controller and few fetch and
execute engines.

The controller controls the sequence of actions in accelerator module where
as the fetch modules request data from shared memory and update the internal
memory of fetched image whereas the execute engines works on the image in
internal memory to compute dot products and send write requests to shared
memory through pipes.

3 Methodology used

Since there is a total memory limit of 4kB we can’t fetch the whole image at
once and store it in internal storage as size of image itself is 2 kB. So initially

the first 29 rows were fetched and stored in internal storage after which the

next last 3 rows were fetched and stored in 6x16 grid of internal storage, thus
internal storage of 1856 bytes was used.

Original image of 32x32 size. Last three rows are suitably mapped to top corner 6x16 locations of internal storage.

28 30

12

14

16

18

20

22

24

26

23

30

Figure 2: Storing image internally

Since internal memory is being re-used, the rows 29-31 cannot be fetched as
long as all the elements in top 6x16 positions have not been re-used.

Thus to make things simple, we fetch and compute the last three rows only
after fetching and computation on all rows except last three rows have been
done.

We have tried to explore parallelism between fetching and execution i.e. we

try to compute the resultant image at required position whenever all the sixteen
required pixels are available.

Thus to denote whether data is up-dated with new image in shared memory
or not, we use another bit corresponding to each pixel which denotes whether
recent image is fetched or not. Before starting the operation it is initialised to
zero and is changed to 1 as and when required data is fetched.

This required another 928 bytes.

We also tried to have multiple fetch engines and multiple execute engines to
enable further parallelism.

4 Parallelism explored

So the following versions were tried. However the loops and modules were pipe-
lined wherever possible to depth 7.

4.1 No parallelism

So here we fetch the 29x32 image first post which we try to compute the dot
product at each pixel for rows 0-25 which is immediately written to memory
through pipes.

After this we fetch the last 3 rows and write it in top 6x16 positions in
image and then compute the dot products for pixels in rows 26,27 and 28 which
is written to shared memory through pipes.

4.2 Parallelism in fetching and execution

Here parallelism in fetching and execution is done. We use the status bits for
each of the memory addresses The same algorithm as above is used but fetching
and execution is done in parallel

The first 29 rows are fetched parallel to which execution of dot product of
resultant image at pixel positions corresponding to rows 0-25 is done which is
written to shared memory through pipes

Dot product computation for each pixel is done only when all 16 required
pixels are available - else it waits.

Post this, the last three rows are fetched and dot product computation on
rows 26-28 is done in parallel which is written to shared memory through pipes.

4.3 Parallelism through one fetching engine and two ex-
ecution engines with fetching and execution not in
parallel

Here we have one fetching engine which fetches the first 29 rows of pixels after
which we have two engines working in parallel on two portions of the image.
One working on first 13 rows and the other execution engine is working on next
13 rows and both could write in parallel onto the memory.

After this we fetch the last 3 rows and write it in top 6x16 positions in
image and then compute the dot products for pixels in rows 26,27 and 28 which
is written to shared memory through pipes.

4.4 Parallelism through one fetching engine and two exe-
cution engines with fetching and execution in parallel

The only difference her from that of the earlier case is that here fetching and
execution is done in parallel.

Thus before starting any operation in parallel we fetch the overlapping zone
i.e the row numbers 13,14 and 15 as these data might change after one engine
has written data.

So we first fetch the rows 13,14 and 15 and update the corresponding status
bits.

After this we fetch the remaining rows of 29x32 image and do execution
simultaneously using two engines.

However note that we don’t do consecutive fetching of all addresses row by
row.We first fetch image pixel one in region 1, the next pixel in region2 (from
row 16) and then the next again from region 1 and so on.

Post this, the last three rows are fetched and dot product computation on
rows 26-28 is done in parallel which is written to shared memory through pipes.

4.5 Parallelism through one fetching engine and four ex-
ecution engines with fetching and execution not in
parallel

Here we have one fetching engine which fetches the first 29 rows of pixels after
which we have four engines working in parallel on four portions of the image.
One working on first 13 rows and 13 columns and the other execution engine is
working on same 13 rows and subsequent 16 columns.

The next two engines work similarly on next 13 rows.

Diagrammatically can be shown as

0 2 4 6 s 10 12 14 16 18 20 22 24 26 og 20
0
Rows
4
6 -, (.
edinn 1 y
S A Region| 2

8

10

< 1

14

16

18

e W e | D A

20 Yoo Region 4
22 N

24

26

28

30

Figure 3: Regions of operation of each engine

After this we fetch the last 3 rows and write it in top 6x16 positions in
image and then compute the dot products for pixels in rows 26,27 and 28 which
is written to shared memory through pipes.

4.6 Parallelism through one fetching engine and four exe-
cution engines with fetching and execution in parallel

The only difference here from that of the earlier case is that here fetching and
execution is done in parallel.

Thus before starting any operation in parallel we fetch the overlapping zone
i.e the row numbers 13,14 and 15 and column numbers 13,14 and 15 (shown in
figure as region 5 and region 6) as these data might change after one engine has

written data which might be used by the other engine in computation.
Diagrammatically can be shown as

Regions 1 to 4 enclosed by bi-directional arrows
Region 5,6 enclosed by rectangles. A

——»C s
olumns Region 5

o 2 4 6 8 10 12 14 |15 18 20 22 24 28 g 30
0
Rows 2
4
5 Redion 1 Redi)
glion- eqion|2
38

Region6 |14

N
4
N

20 e

-y
(&)
Pl
T
|74
ot
=
)]
N

22

24

26

28

30

Figure 4: Regions of operation of different engine

So we first fetch the rows and columns 13,14 and 15 and update the corre-
sponding status bits.

After this we fetch the remaining rows of 29x32 image and do execution
simultaneously using four engines each operating on region 1,2,3 and 4 respec-
tively.

However note that we don’t do consecutive fetching of all addresses row by
row.We first fetch image pixel one in region 1, the next pixel in region2 (from
row 16) ,third from region 3 , fourth from region 4 and then the next again from
region 1 and so on.This ensures no engine would be sitting idle for most of time

initially.
Post this, the last three rows are fetched and dot product computation on
rows 26-28 is done in parallel which is written to shared memory through pipes.

4.7 Parallelism using two fetch engines and two execution
engines

Here again we fetch the image pixels corresponding to rows 13, 14 and 15.

Post this we divide it into two regions namely one from rows 0-12 and the
other from rows 13-28

After this we have two fetch engines each picking up pixels from one region
and updating the status bit. However to synchronise the two,both the parallel
fetching units do reading from shared memory through a common module which
is called by both. Simultaneously, the execution engines also work on both these
regions.

After all these operations have finished the last three rows are fetched and
dot product computation on rows 26-28 is done in parallel which is written to
shared memory through pipes.

4.8 Parallelism using four fetch engines and four execu-
tion engines

Here again we fetch the image pixels corresponding to rows 13, 14 and 15 and
columns 13,14 and 15.

Post this we divide it into four regions as the one in figure 4

After this we have four fetch engines each picking up pixels from one region
and updating the status bit. However to synchronise the two,both the parallel
fetching units do reading from shared memory through a common module which
is called by both the fetching engines. Simultaneously, the execution engines
also work on both these regions.

After all these operations have finished the last three rows are fetched and
dot product computation on rows 26-28 is done in parallel which is written to
shared memory through pipes.

5 Verification and results obtained

Testing was don through a proper c-testbench which was playing the role of
environment and generation 16-bit data using random generator function.

This thread writes the data onto the shared memory multiple times and waits
for accelerator to complete. Once accelerator updates its status, the thread
fetches the 29x29 resultant image and compares with expected data. Errors if
any are printed.

Tried upto 10 such operations in one simulation using the c- testbench. Each
operation consists of the whole process described above. Also tried to note down

the resources and time taken for different levels of parallelism as described in
previous section.

No data mismatch was observed in any of the different levels of parallelism
described indicating that the algorithm and hardware generated is mostly cor-
rect.

Note that total memory used in less than 4kB in all cases.

The results are described in table below.

In the time taken, time is given for five such operations in one simulation.

Parallelism used | Time taken | FF used | Time per operation
3.1 2.34 ms 1678 0.468 ms
3.2 2.45 ms 2475 0.49 ms
3.3 2.3 ms 2194 0.46 ms
3.4 2.57 ms 3290 0.51 ms
3.5 2.306 ms 3473 0.461 ms
3.6 3.45 ms 4434 0.69 ms
3.7 2.3 ms 3229 0.46 ms
3.8 2.77 ms 4744 0.55 ms

Thus we see that parallelism in section 3.7 gives the fastest operation.

	Introduction
	Block Diagram with functionality
	Memory Access
	 Accelerator module

	 Methodology used
	Parallelism explored
	 No parallelism
	 Parallelism in fetching and execution
	 Parallelism through one fetching engine and two execution engines with fetching and execution not in parallel
	 Parallelism through one fetching engine and two execution engines with fetching and execution in parallel
	 Parallelism through one fetching engine and four execution engines with fetching and execution not in parallel
	 Parallelism through one fetching engine and four execution engines with fetching and execution in parallel
	 Parallelism using two fetch engines and two execution engines
	 Parallelism using four fetch engines and four execution engines

	Verification and results obtained

