
SRE presentation : Convergence of iterative Decoding
Methods

Sahasrajit Sarmasarkar
Guide: Prof Nikhil Karamchandani, Prof. Manoj Gopalkrishnan

Note: All material and figures in these slides have been taken from
chapter 2, 3 and 6 of [1].

Convergence of iterative Decoding Methods 1 / 64

LDPC codes

Parity check matrix H is defined for a linear code such that x .HT = 0 for
every code word x . Typically we try to remove redundancies in the matrix
H and have linearly independent rows.

These codes are a class of linear codes where the parity check matrix has
very few 1’s.
This effectively translates to very few variables in each of the constraints
on the variables in code-words.

For example consider matrix H =

1 1 0 1 0 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 and consider

the every code-word to be of form x = (
[
x1 x2 x3 x4 x5 x6 x7

]
)

The constraints translate to the following
x1 + x2 + x4 = 0 , x3 + x4 + x6 = 0,x4 + x5 + x7 = 0

Convergence of iterative Decoding Methods 2 / 64

LDPC codes

Parity check matrix H is defined for a linear code such that x .HT = 0 for
every code word x . Typically we try to remove redundancies in the matrix
H and have linearly independent rows.
These codes are a class of linear codes where the parity check matrix has
very few 1’s.

This effectively translates to very few variables in each of the constraints
on the variables in code-words.

For example consider matrix H =

1 1 0 1 0 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 and consider

the every code-word to be of form x = (
[
x1 x2 x3 x4 x5 x6 x7

]
)

The constraints translate to the following
x1 + x2 + x4 = 0 , x3 + x4 + x6 = 0,x4 + x5 + x7 = 0

Convergence of iterative Decoding Methods 2 / 64

LDPC codes

Parity check matrix H is defined for a linear code such that x .HT = 0 for
every code word x . Typically we try to remove redundancies in the matrix
H and have linearly independent rows.
These codes are a class of linear codes where the parity check matrix has
very few 1’s.
This effectively translates to very few variables in each of the constraints
on the variables in code-words.

For example consider matrix H =

1 1 0 1 0 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 and consider

the every code-word to be of form x = (
[
x1 x2 x3 x4 x5 x6 x7

]
)

The constraints translate to the following
x1 + x2 + x4 = 0 , x3 + x4 + x6 = 0,x4 + x5 + x7 = 0

Convergence of iterative Decoding Methods 2 / 64

LDPC codes

Parity check matrix H is defined for a linear code such that x .HT = 0 for
every code word x . Typically we try to remove redundancies in the matrix
H and have linearly independent rows.
These codes are a class of linear codes where the parity check matrix has
very few 1’s.
This effectively translates to very few variables in each of the constraints
on the variables in code-words.

For example consider matrix H =

1 1 0 1 0 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 and consider

the every code-word to be of form x = (
[
x1 x2 x3 x4 x5 x6 x7

]
)

The constraints translate to the following
x1 + x2 + x4 = 0 , x3 + x4 + x6 = 0,x4 + x5 + x7 = 0

Convergence of iterative Decoding Methods 2 / 64

LDPC codes

Parity check matrix H is defined for a linear code such that x .HT = 0 for
every code word x . Typically we try to remove redundancies in the matrix
H and have linearly independent rows.
These codes are a class of linear codes where the parity check matrix has
very few 1’s.
This effectively translates to very few variables in each of the constraints
on the variables in code-words.

For example consider matrix H =

1 1 0 1 0 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 and consider

the every code-word to be of form x = (
[
x1 x2 x3 x4 x5 x6 x7

]
)

The constraints translate to the following
x1 + x2 + x4 = 0 , x3 + x4 + x6 = 0,x4 + x5 + x7 = 0

Convergence of iterative Decoding Methods 2 / 64

Communication Model assumption

We assume a memoryless, no-feedback communication system where we
send the vector x satisfying the constraint xHT = 0 and receive the vector
y . We denote the set of all codewords satisfying the above constraint as C .
Our aim is the recover vector x with the least error probability. We denote
the vector x as (x1, x2, ..., xn) and the vector y as (y1, y2, ..., yn).

Formally we would like to calculate (also called block-MAP decoding)

x̂MAP(y) = argmax
x

pX |Y (x |y)

To motivate the computation above, we would first calculate

x̂MAP
i (y) = argmax

xi∈{1,−1}
pXi |Y (xi |y)

This decoding above is called Bit Wise MAP decoding where we estimate
each bit such that the probability of error for that bit is minimised. Note
that bit wise MAP decoding for every bit may be different from block wise
MAP decoding.

Convergence of iterative Decoding Methods 3 / 64

Communication Model assumption

We assume a memoryless, no-feedback communication system where we
send the vector x satisfying the constraint xHT = 0 and receive the vector
y . We denote the set of all codewords satisfying the above constraint as C .
Our aim is the recover vector x with the least error probability. We denote
the vector x as (x1, x2, ..., xn) and the vector y as (y1, y2, ..., yn).
Formally we would like to calculate (also called block-MAP decoding)

x̂MAP(y) = argmax
x

pX |Y (x |y)

To motivate the computation above, we would first calculate

x̂MAP
i (y) = argmax

xi∈{1,−1}
pXi |Y (xi |y)

This decoding above is called Bit Wise MAP decoding where we estimate
each bit such that the probability of error for that bit is minimised. Note
that bit wise MAP decoding for every bit may be different from block wise
MAP decoding.

Convergence of iterative Decoding Methods 3 / 64

Communication Model assumption

We assume a memoryless, no-feedback communication system where we
send the vector x satisfying the constraint xHT = 0 and receive the vector
y . We denote the set of all codewords satisfying the above constraint as C .
Our aim is the recover vector x with the least error probability. We denote
the vector x as (x1, x2, ..., xn) and the vector y as (y1, y2, ..., yn).
Formally we would like to calculate (also called block-MAP decoding)

x̂MAP(y) = argmax
x

pX |Y (x |y)

To motivate the computation above, we would first calculate

x̂MAP
i (y) = argmax

xi∈{1,−1}
pXi |Y (xi |y)

This decoding above is called Bit Wise MAP decoding where we estimate
each bit such that the probability of error for that bit is minimised. Note
that bit wise MAP decoding for every bit may be different from block wise
MAP decoding.

Convergence of iterative Decoding Methods 3 / 64

Communication Model assumption

We assume a memoryless, no-feedback communication system where we
send the vector x satisfying the constraint xHT = 0 and receive the vector
y . We denote the set of all codewords satisfying the above constraint as C .
Our aim is the recover vector x with the least error probability. We denote
the vector x as (x1, x2, ..., xn) and the vector y as (y1, y2, ..., yn).
Formally we would like to calculate (also called block-MAP decoding)

x̂MAP(y) = argmax
x

pX |Y (x |y)

To motivate the computation above, we would first calculate

x̂MAP
i (y) = argmax

xi∈{1,−1}
pXi |Y (xi |y)

This decoding above is called Bit Wise MAP decoding where we estimate
each bit such that the probability of error for that bit is minimised. Note
that bit wise MAP decoding for every bit may be different from block wise
MAP decoding.

Convergence of iterative Decoding Methods 3 / 64

Factor Graphs

Factor Graphs essentially help us to factorise sum of a complex expression
into a few factors.

Consider
∑
i ,j

ai .bj . This could be written as (
∑
i
ai).(

∑
j
bj). This idea

may be pretty useful in the context on LDPC codes described above since
there is pretty less variables in each constraint when we wish to construct
marginals.
For the example if

f (x1, x2, x3, x4, x5, x6) = f1(x1, x2, x3).f2(x1, x4, x6)f3(x4)f4(x4, x5) (1)

we could calculate the marginal for x1 with respect to f as follows:∑
∼x1

f (x1, x2, x3, x4, x5, x6)

=
[∑
x2,x3

f1(x1, x2, x3)
][∑

x4

f3(x4)
(∑

x6

f2(x1, x4, x6)
)
.
(∑

x5

f4(x4, x5)
)]

Convergence of iterative Decoding Methods 4 / 64

Factor Graphs

Factor Graphs essentially help us to factorise sum of a complex expression
into a few factors.
Consider

∑
i ,j

ai .bj . This could be written as (
∑
i
ai).(

∑
j
bj).

This idea

may be pretty useful in the context on LDPC codes described above since
there is pretty less variables in each constraint when we wish to construct
marginals.
For the example if

f (x1, x2, x3, x4, x5, x6) = f1(x1, x2, x3).f2(x1, x4, x6)f3(x4)f4(x4, x5) (1)

we could calculate the marginal for x1 with respect to f as follows:∑
∼x1

f (x1, x2, x3, x4, x5, x6)

=
[∑
x2,x3

f1(x1, x2, x3)
][∑

x4

f3(x4)
(∑

x6

f2(x1, x4, x6)
)
.
(∑

x5

f4(x4, x5)
)]

Convergence of iterative Decoding Methods 4 / 64

Factor Graphs

Factor Graphs essentially help us to factorise sum of a complex expression
into a few factors.
Consider

∑
i ,j

ai .bj . This could be written as (
∑
i
ai).(

∑
j
bj). This idea

may be pretty useful in the context on LDPC codes described above since
there is pretty less variables in each constraint when we wish to construct
marginals.

For the example if

f (x1, x2, x3, x4, x5, x6) = f1(x1, x2, x3).f2(x1, x4, x6)f3(x4)f4(x4, x5) (1)

we could calculate the marginal for x1 with respect to f as follows:∑
∼x1

f (x1, x2, x3, x4, x5, x6)

=
[∑
x2,x3

f1(x1, x2, x3)
][∑

x4

f3(x4)
(∑

x6

f2(x1, x4, x6)
)
.
(∑

x5

f4(x4, x5)
)]

Convergence of iterative Decoding Methods 4 / 64

Factor Graphs

Factor Graphs essentially help us to factorise sum of a complex expression
into a few factors.
Consider

∑
i ,j

ai .bj . This could be written as (
∑
i
ai).(

∑
j
bj). This idea

may be pretty useful in the context on LDPC codes described above since
there is pretty less variables in each constraint when we wish to construct
marginals.
For the example if

f (x1, x2, x3, x4, x5, x6) = f1(x1, x2, x3).f2(x1, x4, x6)f3(x4)f4(x4, x5) (1)

we could calculate the marginal for x1 with respect to f as follows:∑
∼x1

f (x1, x2, x3, x4, x5, x6)

=
[∑
x2,x3

f1(x1, x2, x3)
][∑

x4

f3(x4)
(∑

x6

f2(x1, x4, x6)
)
.
(∑

x5

f4(x4, x5)
)]

Convergence of iterative Decoding Methods 4 / 64

Graphical representation of Factor Graphs

We represent the factor graphs as Tanner Bi-partite Graphs. Each
constraint in x .HT = 0 is denoted as a check-node and each variable in
vector x is denoted as a variable node in the graph.
An edge exists from a check-node to a variable node in the Tanner Graph
iff this variable node is present in the constraint corresponding to the
check node.

We construct factor graphs corresponding to this Tanner graph under the
assumption that Tanner Graph is a tree(cycle-free) by rooting it under a
variable node. We denote variable nodes by circles and check nodes by
squares.

Figure: Left: Factor graph as in 1 and Right : tanner graph for matrix H

Convergence of iterative Decoding Methods 5 / 64

Graphical representation of Factor Graphs

We represent the factor graphs as Tanner Bi-partite Graphs. Each
constraint in x .HT = 0 is denoted as a check-node and each variable in
vector x is denoted as a variable node in the graph.
An edge exists from a check-node to a variable node in the Tanner Graph
iff this variable node is present in the constraint corresponding to the
check node.
We construct factor graphs corresponding to this Tanner graph under the
assumption that Tanner Graph is a tree(cycle-free) by rooting it under a
variable node. We denote variable nodes by circles and check nodes by
squares.

Figure: Left: Factor graph as in 1 and Right : tanner graph for matrix H

Convergence of iterative Decoding Methods 5 / 64

Graphical representation of Factor Graphs

We represent the factor graphs as Tanner Bi-partite Graphs. Each
constraint in x .HT = 0 is denoted as a check-node and each variable in
vector x is denoted as a variable node in the graph.
An edge exists from a check-node to a variable node in the Tanner Graph
iff this variable node is present in the constraint corresponding to the
check node.
We construct factor graphs corresponding to this Tanner graph under the
assumption that Tanner Graph is a tree(cycle-free) by rooting it under a
variable node. We denote variable nodes by circles and check nodes by
squares.

Figure: Left: Factor graph as in 1 and Right : tanner graph for matrix H
Convergence of iterative Decoding Methods 5 / 64

Factor graph construction when no cycles

In these problems we assume that the factor graph is a bipartite tree i.e,
there can be no two paths between any two nodes. We wish to compute∑
∼z

g(z , ...) where g(z , ...) denotes all constraints corresponding to this

factor graph.

Figure: Generic representation of Factor Graph and Particular instance

Consider gk(z , ..) from figure above. Variable z cannot be shared since
they form a tree.∑
∼z

g(z , ..) =
∑
∼z

K∏
k=1

[gk(z , ..)] =
K∏

k=1

∑
∼z

gk(z , ..)

Convergence of iterative Decoding Methods 6 / 64

Factor graph construction when no cycles

In these problems we assume that the factor graph is a bipartite tree i.e,
there can be no two paths between any two nodes. We wish to compute∑
∼z

g(z , ...) where g(z , ...) denotes all constraints corresponding to this

factor graph.

Figure: Generic representation of Factor Graph and Particular instance

Consider gk(z , ..) from figure above. Variable z cannot be shared since
they form a tree.∑
∼z

g(z , ..) =
∑
∼z

K∏
k=1

[gk(z , ..)] =
K∏

k=1

∑
∼z

gk(z , ..)

Convergence of iterative Decoding Methods 6 / 64

Factor graph construction when no cycles

In these problems we assume that the factor graph is a bipartite tree i.e,
there can be no two paths between any two nodes. We wish to compute∑
∼z

g(z , ...) where g(z , ...) denotes all constraints corresponding to this

factor graph.

Figure: Generic representation of Factor Graph and Particular instance

Consider gk(z , ..) from figure above. Variable z cannot be shared since
they form a tree.∑
∼z

g(z , ..) =
∑
∼z

K∏
k=1

[gk(z , ..)] =
K∏

k=1

∑
∼z

gk(z , ..)

Convergence of iterative Decoding Methods 6 / 64

Forney style factor graphs

Forney style factor graph coverts the factor graph which is bipartite
into a non bipartite graph by replacing variable nodes as (half-) edges.

In case a variable node has degree greater than 2, we replicate by an
equality factor. However note that the additional variables have to be
equal to the parent by some equality factor.

Figure: Conversion of variable node of degree K to FSFG from factor graph.
Note that we need to ensure x = x1 = x2 = .. = xK

Convergence of iterative Decoding Methods 7 / 64

Forney style factor graphs

Forney style factor graph coverts the factor graph which is bipartite
into a non bipartite graph by replacing variable nodes as (half-) edges.

In case a variable node has degree greater than 2, we replicate by an
equality factor. However note that the additional variables have to be
equal to the parent by some equality factor.

Figure: Conversion of variable node of degree K to FSFG from factor graph.
Note that we need to ensure x = x1 = x2 = .. = xK

Convergence of iterative Decoding Methods 7 / 64

Forney style factor graphs

Forney style factor graph coverts the factor graph which is bipartite
into a non bipartite graph by replacing variable nodes as (half-) edges.

In case a variable node has degree greater than 2, we replicate by an
equality factor. However note that the additional variables have to be
equal to the parent by some equality factor.

Figure: Conversion of variable node of degree K to FSFG from factor graph.
Note that we need to ensure x = x1 = x2 = .. = xK

Convergence of iterative Decoding Methods 7 / 64

Factor graphs continued

Thus we may recursively calculate∑
∼z

gk(z , ..) =
∑
∼z

h(z , z1, ..zJ)
J∏

j=1
[hj(zj , ..)]

=
∑
∼z

h(z , z1, ..zJ)
J∏

j=1
[
∑
∼zj

hj(zj , ..)]

Convergence of iterative Decoding Methods 8 / 64

Factor graphs continued

Thus we may recursively calculate∑
∼z

gk(z , ..) =
∑
∼z

h(z , z1, ..zJ)
J∏

j=1
[hj(zj , ..)]

=
∑
∼z

h(z , z1, ..zJ)
J∏

j=1
[
∑
∼zj

hj(zj , ..)]

Convergence of iterative Decoding Methods 8 / 64

This idea may essentially be used for marginalisation by message passing.

Figure: Sample message passing for marginalisation of f w.r.t x1

This can be generalised for any other variable by rooting the tree at any
other variable node.

Convergence of iterative Decoding Methods 9 / 64

Message processing rules

Figure: Formal message passing rules

Convergence of iterative Decoding Methods 10 / 64

Bit-Wise Decoding via Message passing

The bit wise MAP decoder reads that :

x̂i
MAP(y) = argmax

xi∈{1,−1}
pXi |Y (xi |y)

= argmax
xi∈{+1,−1}

∑
∼xi

pY |X (y |x)pX (x)

= argmax
xi∈{+1,−1}

∑
∼xi

(
∏
j

pYj |Xj
(yj |xj))1x∈C

Now (
∏
j
pYj |Xj

(yj |xj))1x∈C can again be represented as a factor graph

g(xi , ...) after rooting it at a variable node xi if Tanner graph
corresponding to this code is a tree.

Figure: Factor graph for our example under bit-decoding

Convergence of iterative Decoding Methods 11 / 64

Bit-Wise Decoding via Message passing

The bit wise MAP decoder reads that :

x̂i
MAP(y) = argmax

xi∈{1,−1}
pXi |Y (xi |y)

= argmax
xi∈{+1,−1}

∑
∼xi

pY |X (y |x)pX (x)

= argmax
xi∈{+1,−1}

∑
∼xi

(
∏
j

pYj |Xj
(yj |xj))1x∈C

Now (
∏
j
pYj |Xj

(yj |xj))1x∈C can again be represented as a factor graph

g(xi , ...) after rooting it at a variable node xi if Tanner graph
corresponding to this code is a tree.

Figure: Factor graph for our example under bit-decoding
Convergence of iterative Decoding Methods 11 / 64

Blockwise MAP decoding

We can see that

x̂MAP(y) = argmax
x

pX |Y (x |y)

= argmax
x

(
∏
j

pYj |Xj
(yj |xj))1{x∈C}

Now consider i th bit of x̂MAP(y) which might be written as

(x̂MAP(y))i = argmax
xi∈{+1,−1}

max
∼xi

∏
j

(pYj |Xj
(yj |xj))(1{x∈C})

= argmax
xi∈{+1,−1}

max
∼xi

∑
j

log(pYj |Xj
(yj |xj)) + log(1{x∈C})

We can show that the same distributive properties of (product,sum) hold
for (sum,max) as well. Specifically, max{x + y , y + z} = x + max{y , z}.
The metric used here would be log(pYj |Xj

(yj |xj)) instead of (pYj |Xj
(yj |xj))

in bit-wise decoding example. from each leaf check node.

Convergence of iterative Decoding Methods 14 / 64

Blockwise MAP decoding

We can see that

x̂MAP(y) = argmax
x

pX |Y (x |y)

= argmax
x

(
∏
j

pYj |Xj
(yj |xj))1{x∈C}

Now consider i th bit of x̂MAP(y) which might be written as

(x̂MAP(y))i = argmax
xi∈{+1,−1}

max
∼xi

∏
j

(pYj |Xj
(yj |xj))(1{x∈C})

= argmax
xi∈{+1,−1}

max
∼xi

∑
j

log(pYj |Xj
(yj |xj)) + log(1{x∈C})

We can show that the same distributive properties of (product,sum) hold
for (sum,max) as well. Specifically, max{x + y , y + z} = x + max{y , z}.

The metric used here would be log(pYj |Xj
(yj |xj)) instead of (pYj |Xj

(yj |xj))
in bit-wise decoding example. from each leaf check node.

Convergence of iterative Decoding Methods 14 / 64

Blockwise MAP decoding

We can see that

x̂MAP(y) = argmax
x

pX |Y (x |y)

= argmax
x

(
∏
j

pYj |Xj
(yj |xj))1{x∈C}

Now consider i th bit of x̂MAP(y) which might be written as

(x̂MAP(y))i = argmax
xi∈{+1,−1}

max
∼xi

∏
j

(pYj |Xj
(yj |xj))(1{x∈C})

= argmax
xi∈{+1,−1}

max
∼xi

∑
j

log(pYj |Xj
(yj |xj)) + log(1{x∈C})

We can show that the same distributive properties of (product,sum) hold
for (sum,max) as well. Specifically, max{x + y , y + z} = x + max{y , z}.
The metric used here would be log(pYj |Xj

(yj |xj)) instead of (pYj |Xj
(yj |xj))

in bit-wise decoding example. from each leaf check node.
Convergence of iterative Decoding Methods 14 / 64

Limitations of cycle free codes

Theorem : Let C be a binary linear code of rate r that admits a binary
tanner graph that is a forest. Then C contains at least 2r−1

2 n codewords of
weight 2.

This is effectively not a good news for us.
So we cannot be contended with cycle free graphs as they may have many
pairs of code-words with small Hamming distance. Thus we have to look
at codes whose Tanner graphs may have small cycles.
In the following slides, we attempt to do decoding under a preliminary
binary erasure channel and look at the asymptotic behaviour as block
length tends to ∞.

Convergence of iterative Decoding Methods 15 / 64

Limitations of cycle free codes

Theorem : Let C be a binary linear code of rate r that admits a binary
tanner graph that is a forest. Then C contains at least 2r−1

2 n codewords of
weight 2.
This is effectively not a good news for us.

So we cannot be contended with cycle free graphs as they may have many
pairs of code-words with small Hamming distance. Thus we have to look
at codes whose Tanner graphs may have small cycles.
In the following slides, we attempt to do decoding under a preliminary
binary erasure channel and look at the asymptotic behaviour as block
length tends to ∞.

Convergence of iterative Decoding Methods 15 / 64

Limitations of cycle free codes

Theorem : Let C be a binary linear code of rate r that admits a binary
tanner graph that is a forest. Then C contains at least 2r−1

2 n codewords of
weight 2.
This is effectively not a good news for us.
So we cannot be contended with cycle free graphs as they may have many
pairs of code-words with small Hamming distance. Thus we have to look
at codes whose Tanner graphs may have small cycles.

In the following slides, we attempt to do decoding under a preliminary
binary erasure channel and look at the asymptotic behaviour as block
length tends to ∞.

Convergence of iterative Decoding Methods 15 / 64

Limitations of cycle free codes

Theorem : Let C be a binary linear code of rate r that admits a binary
tanner graph that is a forest. Then C contains at least 2r−1

2 n codewords of
weight 2.
This is effectively not a good news for us.
So we cannot be contended with cycle free graphs as they may have many
pairs of code-words with small Hamming distance. Thus we have to look
at codes whose Tanner graphs may have small cycles.
In the following slides, we attempt to do decoding under a preliminary
binary erasure channel and look at the asymptotic behaviour as block
length tends to ∞.

Convergence of iterative Decoding Methods 15 / 64

Binary erasure channel

This is an erasure channel where there is not bit flip.
The bit may get erased with probability ε denoted by BEC(ε).

Figure: Binary symmetric channel

We can check Shannon capacity of this channel to be CBEC (ε) = (1− ε)
Also we may degrade BEC(ε) to BEC(δ) by coupling it with BEC(δ−εδ+ε)

Figure: Binary symmetric channel

Convergence of iterative Decoding Methods 16 / 64

Binary erasure channel

This is an erasure channel where there is not bit flip.
The bit may get erased with probability ε denoted by BEC(ε).

Figure: Binary symmetric channel

We can check Shannon capacity of this channel to be CBEC (ε) = (1− ε)

Also we may degrade BEC(ε) to BEC(δ) by coupling it with BEC(δ−εδ+ε)

Figure: Binary symmetric channel

Convergence of iterative Decoding Methods 16 / 64

Binary erasure channel

This is an erasure channel where there is not bit flip.
The bit may get erased with probability ε denoted by BEC(ε).

Figure: Binary symmetric channel

We can check Shannon capacity of this channel to be CBEC (ε) = (1− ε)
Also we may degrade BEC(ε) to BEC(δ) by coupling it with BEC(δ−εδ+ε)

Figure: Binary symmetric channel
Convergence of iterative Decoding Methods 16 / 64

Tanner graph and related symbols

We tend to denote an LDPC code by bipartite graph with 2 rows
(check-nodes and variable nodes)

i th node in first row is connected to j th node in second row if Hji=1. Thus
different parity check matrices may give different Tanner Graphs
We often use the following symbols. Λi denotes the number of variable
nodes of degree i and Pi denote the number of parity check nodes of
degree i.
We use the following polynomials

Λ(x) =
lmax∑
i=1

Λix
i and P(x) =

rmax∑
i=1

Pi .x
i

Simple Relationships

Λ(1) = n , P(1) = n(1− r) , Λ′(1) = P ′(1)
∑
i
iΛi =

∑
i
iPi where r is the

design rate of code

Normalised polynomials written as L(x) = Λ(x)
Λ(1) R(x) = P(x)

P(1)

Convergence of iterative Decoding Methods 19 / 64

Tanner graph and related symbols

We tend to denote an LDPC code by bipartite graph with 2 rows
(check-nodes and variable nodes)
i th node in first row is connected to j th node in second row if Hji=1. Thus
different parity check matrices may give different Tanner Graphs

We often use the following symbols. Λi denotes the number of variable
nodes of degree i and Pi denote the number of parity check nodes of
degree i.
We use the following polynomials

Λ(x) =
lmax∑
i=1

Λix
i and P(x) =

rmax∑
i=1

Pi .x
i

Simple Relationships

Λ(1) = n , P(1) = n(1− r) , Λ′(1) = P ′(1)
∑
i
iΛi =

∑
i
iPi where r is the

design rate of code

Normalised polynomials written as L(x) = Λ(x)
Λ(1) R(x) = P(x)

P(1)

Convergence of iterative Decoding Methods 19 / 64

Tanner graph and related symbols

We tend to denote an LDPC code by bipartite graph with 2 rows
(check-nodes and variable nodes)
i th node in first row is connected to j th node in second row if Hji=1. Thus
different parity check matrices may give different Tanner Graphs
We often use the following symbols. Λi denotes the number of variable
nodes of degree i and Pi denote the number of parity check nodes of
degree i.
We use the following polynomials

Λ(x) =
lmax∑
i=1

Λix
i and P(x) =

rmax∑
i=1

Pi .x
i

Simple Relationships

Λ(1) = n , P(1) = n(1− r) , Λ′(1) = P ′(1)
∑
i
iΛi =

∑
i
iPi where r is the

design rate of code

Normalised polynomials written as L(x) = Λ(x)
Λ(1) R(x) = P(x)

P(1)

Convergence of iterative Decoding Methods 19 / 64

Tanner graph and related symbols

We tend to denote an LDPC code by bipartite graph with 2 rows
(check-nodes and variable nodes)
i th node in first row is connected to j th node in second row if Hji=1. Thus
different parity check matrices may give different Tanner Graphs
We often use the following symbols. Λi denotes the number of variable
nodes of degree i and Pi denote the number of parity check nodes of
degree i.
We use the following polynomials

Λ(x) =
lmax∑
i=1

Λix
i and P(x) =

rmax∑
i=1

Pi .x
i

Simple Relationships

Λ(1) = n , P(1) = n(1− r) , Λ′(1) = P ′(1)
∑
i
iΛi =

∑
i
iPi where r is the

design rate of code

Normalised polynomials written as L(x) = Λ(x)
Λ(1) R(x) = P(x)

P(1)

Convergence of iterative Decoding Methods 19 / 64

Tanner graph and related symbols

We tend to denote an LDPC code by bipartite graph with 2 rows
(check-nodes and variable nodes)
i th node in first row is connected to j th node in second row if Hji=1. Thus
different parity check matrices may give different Tanner Graphs
We often use the following symbols. Λi denotes the number of variable
nodes of degree i and Pi denote the number of parity check nodes of
degree i.
We use the following polynomials

Λ(x) =
lmax∑
i=1

Λix
i and P(x) =

rmax∑
i=1

Pi .x
i

Simple Relationships

Λ(1) = n , P(1) = n(1− r) , Λ′(1) = P ′(1)
∑
i
iΛi =

∑
i
iPi where r is the

design rate of code

Normalised polynomials written as L(x) = Λ(x)
Λ(1) R(x) = P(x)

P(1)

Convergence of iterative Decoding Methods 19 / 64

Symbols from an edge perspective

We define new symbols from an edge perspective.

λ(x) =
∑
i
λix

i−1 = Λ′(x)
Λ′(1)

ρ(x) =
∑
i
ρix

i−1 = P′(x)
P′(1)

Here λi (ρi) denote the fraction of edges that connect to variable(check)
nodes of degree i respectively.
We also write lavg = L′(1) = 1∫ 1

0 λ(x)dx
and ravg = R ′(1) = 1∫ 1

0 ρ(x)dx

We can show design rate of code

r(Λ,P) = 1− L′(1)
R′(1) = 1− lavg

ravg
In terms of λ, ρ we may write it as

r(λ, ρ) = 1−
∫ 1

0 ρ(x)∫ 1
0 λ(x)

However it is important to note that the actual rate of the code may be be
higher since some of the parity checks be redundant.

Convergence of iterative Decoding Methods 20 / 64

Symbols from an edge perspective

We define new symbols from an edge perspective.

λ(x) =
∑
i
λix

i−1 = Λ′(x)
Λ′(1)

ρ(x) =
∑
i
ρix

i−1 = P′(x)
P′(1)

Here λi (ρi) denote the fraction of edges that connect to variable(check)
nodes of degree i respectively.

We also write lavg = L′(1) = 1∫ 1
0 λ(x)dx

and ravg = R ′(1) = 1∫ 1
0 ρ(x)dx

We can show design rate of code

r(Λ,P) = 1− L′(1)
R′(1) = 1− lavg

ravg
In terms of λ, ρ we may write it as

r(λ, ρ) = 1−
∫ 1

0 ρ(x)∫ 1
0 λ(x)

However it is important to note that the actual rate of the code may be be
higher since some of the parity checks be redundant.

Convergence of iterative Decoding Methods 20 / 64

Symbols from an edge perspective

We define new symbols from an edge perspective.

λ(x) =
∑
i
λix

i−1 = Λ′(x)
Λ′(1)

ρ(x) =
∑
i
ρix

i−1 = P′(x)
P′(1)

Here λi (ρi) denote the fraction of edges that connect to variable(check)
nodes of degree i respectively.
We also write lavg = L′(1) = 1∫ 1

0 λ(x)dx
and ravg = R ′(1) = 1∫ 1

0 ρ(x)dx

We can show design rate of code

r(Λ,P) = 1− L′(1)
R′(1) = 1− lavg

ravg
In terms of λ, ρ we may write it as

r(λ, ρ) = 1−
∫ 1

0 ρ(x)∫ 1
0 λ(x)

However it is important to note that the actual rate of the code may be be
higher since some of the parity checks be redundant.

Convergence of iterative Decoding Methods 20 / 64

Symbols from an edge perspective

We define new symbols from an edge perspective.

λ(x) =
∑
i
λix

i−1 = Λ′(x)
Λ′(1)

ρ(x) =
∑
i
ρix

i−1 = P′(x)
P′(1)

Here λi (ρi) denote the fraction of edges that connect to variable(check)
nodes of degree i respectively.
We also write lavg = L′(1) = 1∫ 1

0 λ(x)dx
and ravg = R ′(1) = 1∫ 1

0 ρ(x)dx

We can show design rate of code

r(Λ,P) = 1− L′(1)
R′(1) = 1− lavg

ravg
In terms of λ, ρ we may write it as

r(λ, ρ) = 1−
∫ 1

0 ρ(x)∫ 1
0 λ(x)

However it is important to note that the actual rate of the code may be be
higher since some of the parity checks be redundant.

Convergence of iterative Decoding Methods 20 / 64

The standard ensemble LDPC(Λ,P)

Each graph in LDPC(Λ,P) has Λ(1) variable nodes and P(1) check nodes:
Λi variable nodes of degree i and Pi check nodes of degree i .
A node of degree i is a node from where i edges emanate so in total there
are Λ′(1) = P ′(1) sockets on each side. Label the sockets on each side
with the set [Λ′(1)] = {1, ...,Λ′(1)} in some arbitrary but fixed way.
Let σ be a permutation on [Λ′(1)]. Associate a bipartite graph by
connecting i th socket on variable side to the σ(i)th socket on check node
side. Letting σ run over all permutations on [Λ′(1)] generates a set of
bipartite graphs. Finally, we place uniform probability distributions on the
set of permutations to generate the ensemble LDPC(Λ,P).

Construction of parity check matrix H

Since there could be multiple edges between two node,

Hji = 1 iff there are an odd number of edges between i th variable
node and j th check node.

Hji = 0 iff there are an even number of edges between i th variable
node and j th check node.

Convergence of iterative Decoding Methods 21 / 64

Message passing decoder for binary erasure channel

By standard message passing rules, initial message is =
(pYj |Xj

(yj |0), pYj |Xj
(yj |1)). These messages could be (1-ε,0),(ε,ε) or (0,1-ε)

corresponding to 0,erasure and 1.
Equivalently we work with a set of messages (1,0),(1,1) and (0,1)

Data processing rules

These rules are directly linked to the message propagation described earlier

At each variable node the outgoing node is an erasure if all of the one
incoming node is erasure.

Similarly at each check node the outgoing is a erasure if any one of
the incoming node is so.

Formally for every check node we write
(µ(0),µ(1))=(

∑
{x1,x2}

1x1+x2=0µ1(x1)µ2(x2),
∑
{x1,x2}

1x1+x2=1µ1(x1)µ2(x2)) as

per the message processing rules

For every variable nodes we could just directly take their products.

Convergence of iterative Decoding Methods 22 / 64

Message passing decoder for binary erasure channel

By standard message passing rules, initial message is =
(pYj |Xj

(yj |0), pYj |Xj
(yj |1)). These messages could be (1-ε,0),(ε,ε) or (0,1-ε)

corresponding to 0,erasure and 1.
Equivalently we work with a set of messages (1,0),(1,1) and (0,1)

Data processing rules

These rules are directly linked to the message propagation described earlier

At each variable node the outgoing node is an erasure if all of the one
incoming node is erasure.

Similarly at each check node the outgoing is a erasure if any one of
the incoming node is so.

Formally for every check node we write
(µ(0),µ(1))=(

∑
{x1,x2}

1x1+x2=0µ1(x1)µ2(x2),
∑
{x1,x2}

1x1+x2=1µ1(x1)µ2(x2)) as

per the message processing rules

For every variable nodes we could just directly take their products.
Convergence of iterative Decoding Methods 22 / 64

Message passing decoder for binary erasure channel

By standard message passing rules, initial message is =
(pYj |Xj

(yj |0), pYj |Xj
(yj |1)). These messages could be (1-ε,0),(ε,ε) or (0,1-ε)

corresponding to 0,erasure and 1.
Equivalently we work with a set of messages (1,0),(1,1) and (0,1)

Data processing rules

These rules are directly linked to the message propagation described earlier

At each variable node the outgoing node is an erasure if all of the one
incoming node is erasure.

Similarly at each check node the outgoing is a erasure if any one of
the incoming node is so.

Formally for every check node we write
(µ(0),µ(1))=(

∑
{x1,x2}

1x1+x2=0µ1(x1)µ2(x2),
∑
{x1,x2}

1x1+x2=1µ1(x1)µ2(x2)) as

per the message processing rules
For every variable nodes we could just directly take their products.

Convergence of iterative Decoding Methods 22 / 64

Diagrams for message passing decoder under BEC

Figure: Message passing rules under BEC

Convergence of iterative Decoding Methods 23 / 64

An example of message passing decoder

Figure: Message passing decoder for [7,4] Hamming code. A 0 message indicated
by a thin line, 1 message by thick line , ? message by a dotted line. Received
word y = (0, ?, ?, 1, 0, ?, 0)

Convergence of iterative Decoding Methods 24 / 64

Some simplifications

We denote PBP(G , ε, l , x) as the conditional(bit or block) probability of
erasure after l th decoding iteration assuming x was sent, x ∈ C .
Note that each decoding iteration consists of messages being sent once
from variable nodes to check nodes and once again being sent from check
to variable nodes.

We can say that PBP(G , ε, l , x) =

∑
x′∈C

PBP(G ,ε,l ,x ′)

|C | = PBP(G , ε, l)
Here we can clearly observe the probability of error or success of message
passing decoding won’t change whether we send 0 or 1 as message bit So
we can work with all zero code-word as message sent.

Convergence of iterative Decoding Methods 25 / 64

Some simplifications

We denote PBP(G , ε, l , x) as the conditional(bit or block) probability of
erasure after l th decoding iteration assuming x was sent, x ∈ C .
Note that each decoding iteration consists of messages being sent once
from variable nodes to check nodes and once again being sent from check
to variable nodes.

We can say that PBP(G , ε, l , x) =

∑
x′∈C

PBP(G ,ε,l ,x ′)

|C | = PBP(G , ε, l)

Here we can clearly observe the probability of error or success of message
passing decoding won’t change whether we send 0 or 1 as message bit So
we can work with all zero code-word as message sent.

Convergence of iterative Decoding Methods 25 / 64

Some simplifications

We denote PBP(G , ε, l , x) as the conditional(bit or block) probability of
erasure after l th decoding iteration assuming x was sent, x ∈ C .
Note that each decoding iteration consists of messages being sent once
from variable nodes to check nodes and once again being sent from check
to variable nodes.

We can say that PBP(G , ε, l , x) =

∑
x′∈C

PBP(G ,ε,l ,x ′)

|C | = PBP(G , ε, l)
Here we can clearly observe the probability of error or success of message
passing decoding won’t change whether we send 0 or 1 as message bit So
we can work with all zero code-word as message sent.

Convergence of iterative Decoding Methods 25 / 64

Concentration around ensemble averages

Theorem: Let G, uniformly chosen at random from LDPC(n,λ,ρ) be used
for transmission over BEC(ε).Assume that decoder performs l rounds of
decoding and PBP

b (G , ε, l) denote bit erasure probability.Then for every δ,
there exists an α > 0 , α = α(λ, ρ, ε, δ, l) such that

P{|PBP(G , ε, l)− EG ′∈LDPC(n,λ,ρ)[PBP(G ′, ε, l)]| > δ} ≤ e−αn

This essentially shows all except an exponential decaying average behave
within an arbitrarily small δ from ensemble.

Convergence of iterative Decoding Methods 26 / 64

Computation graph

In this model we expand the tanner graph over decoding iterations and
tend to form a tree over several decoding iterations.

We could do so over a node perspective (computation graph for a message
at node randomly chosen) or over an edge perspective(computation for
message sent over an edge randomly chosen) denoted by C◦l (n, λ, ρ) or
C→l (n, λ, ρ)
However note that we could have multiple occurrences of same node or
edge over the computation graph. Note that PBP

b (T , ε) denotes the
probability of error given that the computation graph is T .
With this definition we have

ELDPC(n,λ,ρ)[PBP
b (G , ε, l)] =

∑
T

P{T ∈ C◦l (n, λ, ρ)}PBP
b (T , ε)

We now construct an ensemble of trees denoted by T ◦l (λ, ρ) and T →l (λ, ρ)
such that limn→∞ ELDPC(n,λ,ρ)[PBP

b (G , ε, l)] = PBP
T ◦l (λ,ρ)(ε) where

PBP
T ◦l (λ,ρ) =

∑
T

P{T ∈ T ◦l (λ, ρ)}PBP
b (T , ε) whose construction is described

in the following slides.

Convergence of iterative Decoding Methods 27 / 64

Computation graph

In this model we expand the tanner graph over decoding iterations and
tend to form a tree over several decoding iterations.
We could do so over a node perspective (computation graph for a message
at node randomly chosen) or over an edge perspective(computation for
message sent over an edge randomly chosen) denoted by C◦l (n, λ, ρ) or
C→l (n, λ, ρ)
However note that we could have multiple occurrences of same node or
edge over the computation graph. Note that PBP

b (T , ε) denotes the
probability of error given that the computation graph is T .

With this definition we have

ELDPC(n,λ,ρ)[PBP
b (G , ε, l)] =

∑
T

P{T ∈ C◦l (n, λ, ρ)}PBP
b (T , ε)

We now construct an ensemble of trees denoted by T ◦l (λ, ρ) and T →l (λ, ρ)
such that limn→∞ ELDPC(n,λ,ρ)[PBP

b (G , ε, l)] = PBP
T ◦l (λ,ρ)(ε) where

PBP
T ◦l (λ,ρ) =

∑
T

P{T ∈ T ◦l (λ, ρ)}PBP
b (T , ε) whose construction is described

in the following slides.

Convergence of iterative Decoding Methods 27 / 64

Computation graph

In this model we expand the tanner graph over decoding iterations and
tend to form a tree over several decoding iterations.
We could do so over a node perspective (computation graph for a message
at node randomly chosen) or over an edge perspective(computation for
message sent over an edge randomly chosen) denoted by C◦l (n, λ, ρ) or
C→l (n, λ, ρ)
However note that we could have multiple occurrences of same node or
edge over the computation graph. Note that PBP

b (T , ε) denotes the
probability of error given that the computation graph is T .
With this definition we have

ELDPC(n,λ,ρ)[PBP
b (G , ε, l)] =

∑
T

P{T ∈ C◦l (n, λ, ρ)}PBP
b (T , ε)

We now construct an ensemble of trees denoted by T ◦l (λ, ρ) and T →l (λ, ρ)
such that limn→∞ ELDPC(n,λ,ρ)[PBP

b (G , ε, l)] = PBP
T ◦l (λ,ρ)(ε) where

PBP
T ◦l (λ,ρ) =

∑
T

P{T ∈ T ◦l (λ, ρ)}PBP
b (T , ε) whose construction is described

in the following slides.

Convergence of iterative Decoding Methods 27 / 64

Computation graph

In this model we expand the tanner graph over decoding iterations and
tend to form a tree over several decoding iterations.
We could do so over a node perspective (computation graph for a message
at node randomly chosen) or over an edge perspective(computation for
message sent over an edge randomly chosen) denoted by C◦l (n, λ, ρ) or
C→l (n, λ, ρ)
However note that we could have multiple occurrences of same node or
edge over the computation graph. Note that PBP

b (T , ε) denotes the
probability of error given that the computation graph is T .
With this definition we have

ELDPC(n,λ,ρ)[PBP
b (G , ε, l)] =

∑
T

P{T ∈ C◦l (n, λ, ρ)}PBP
b (T , ε)

We now construct an ensemble of trees denoted by T ◦l (λ, ρ) and T →l (λ, ρ)
such that limn→∞ ELDPC(n,λ,ρ)[PBP

b (G , ε, l)] = PBP
T ◦l (λ,ρ)(ε) where

PBP
T ◦l (λ,ρ) =

∑
T

P{T ∈ T ◦l (λ, ρ)}PBP
b (T , ε) whose construction is described

in the following slides.
Convergence of iterative Decoding Methods 27 / 64

Some examples of computation graphs

Figure: Computation graph of height 2(two iterations) for bit x1 corresponding to
H matrix and Tanner Graph on right. The computation graph of height 2 for
edge e is the subtree consisting of edge e, variable node x1 and two sub-trees
rooted in check nodes c5 and c9.

Convergence of iterative Decoding Methods 28 / 64

Some intuition towards tree ensembles

We attempt to construct a tree ensemble such that asymptotically as n
tends to ∞, the computation graph ensemble converges to this tree
ensemble.
The essential idea behind this transformation is that the probability that
the computation graph constructed has at least one node or edge
appearing twice behave as O(1

n). Thus asymptotically, it behaves as a tree.
The following computation for C◦1(n, λ(x) = x , ρ(x) = x2) would
demonstrate it.

Figure: Elements of C◦1 (n, λ(x) = x , ρ(x) = x2) with their probabilities Thick lines
denote double edges

Convergence of iterative Decoding Methods 29 / 64

Tree ensemble

Let us define tree ensemble from edge and node perspective as T ◦l (λ, ρ)
and T →l (λ, ρ)

The ensemble T →0 (λ, ρ) contains a single element- trivial tree
consisting of root variable node.

Define L(i) to be a bipartite tree rooted in a variable node with
i(check-node) children and R(i) to be a bipartite tree rooted in a
check-node with i variable nodes.

To sample from T →l (λ, ρ) , l ≥ 1 first sample from T →l−1(λ, ρ) and
replace the following-

Each of its leaf variable nodes from a random element in
{L(i)}i≥1 where L(i) is chosen with probability λi+1

Each of its leaf check nodes from a random element in {R(i)}i≥1

where R(i) is chosen with probability ρi+1

This also implies the following recursive definition
To sample from T →l (λ, ρ), sample from T →i (λ, ρ), 0 ≤ i ≤ l and replace
each of its leaf variable nodes by independent samples from T →l−i (λ, ρ)

Convergence of iterative Decoding Methods 30 / 64

Tree ensemble

Let us define tree ensemble from edge and node perspective as T ◦l (λ, ρ)
and T →l (λ, ρ)

The ensemble T →0 (λ, ρ) contains a single element- trivial tree
consisting of root variable node.

Define L(i) to be a bipartite tree rooted in a variable node with
i(check-node) children and R(i) to be a bipartite tree rooted in a
check-node with i variable nodes.

To sample from T →l (λ, ρ) , l ≥ 1 first sample from T →l−1(λ, ρ) and
replace the following-

Each of its leaf variable nodes from a random element in
{L(i)}i≥1 where L(i) is chosen with probability λi+1

Each of its leaf check nodes from a random element in {R(i)}i≥1

where R(i) is chosen with probability ρi+1

This also implies the following recursive definition
To sample from T →l (λ, ρ), sample from T →i (λ, ρ), 0 ≤ i ≤ l and replace
each of its leaf variable nodes by independent samples from T →l−i (λ, ρ)

Convergence of iterative Decoding Methods 30 / 64

Tree ensemble

Let us define tree ensemble from edge and node perspective as T ◦l (λ, ρ)
and T →l (λ, ρ)

The ensemble T →0 (λ, ρ) contains a single element- trivial tree
consisting of root variable node.

Define L(i) to be a bipartite tree rooted in a variable node with
i(check-node) children and R(i) to be a bipartite tree rooted in a
check-node with i variable nodes.

To sample from T →l (λ, ρ) , l ≥ 1 first sample from T →l−1(λ, ρ) and
replace the following-

Each of its leaf variable nodes from a random element in
{L(i)}i≥1 where L(i) is chosen with probability λi+1

Each of its leaf check nodes from a random element in {R(i)}i≥1

where R(i) is chosen with probability ρi+1

This also implies the following recursive definition
To sample from T →l (λ, ρ), sample from T →i (λ, ρ), 0 ≤ i ≤ l and replace
each of its leaf variable nodes by independent samples from T →l−i (λ, ρ)

Convergence of iterative Decoding Methods 30 / 64

Tree ensemble continued

The ensemble T ◦0 (λ, ρ) contains a single element- trivial tree
consisting of root variable node.

To sample from from T ◦1 (λ, ρ), first choose an element randomly
from {L(i)}i≥1 where L(i) is chosen with probability Li and then
substitute each of its leaf check nodes from a random element in
{R(i)}i≥1 where R(i) is chosen with probability ρi+1

The other things are same as that of previous definition

Figure: Basic trees L(5) and R(7)

Convergence of iterative Decoding Methods 31 / 64

Examples

We give example of a ensemble where λ(x) = (1/2)x + (1/2) x2, ρ(x) =
(1/5)x5 + (4/5) x4

Figure: Ensembles corresponding to T ◦1 (λ, ρ) with probabilities

Convergence of iterative Decoding Methods 32 / 64

Error probability for tree ensembles

As in computational graphs we can associate with each element of
T ◦l (λ, ρ) a probability of error: we imagine each variable is initially labelled
with 0 which could be erased independently with probability ε and the BP
decoder tries to decode root node.

We could write probability of error for tree ensemble as

PBP
T ◦l (λ,ρ) =

∑
T

P{T ∈ T ◦l (λ, ρ)}PBP
b (T , ε)

Convergence of iterative Decoding Methods 33 / 64

Error probability for tree ensembles

As in computational graphs we can associate with each element of
T ◦l (λ, ρ) a probability of error: we imagine each variable is initially labelled
with 0 which could be erased independently with probability ε and the BP
decoder tries to decode root node.
We could write probability of error for tree ensemble as

PBP
T ◦l (λ,ρ) =

∑
T

P{T ∈ T ◦l (λ, ρ)}PBP
b (T , ε)

Convergence of iterative Decoding Methods 33 / 64

Convergence to tree channel

Let us describe the tree channel and show how it links to LDPC decoding
for large block lengths

Consider the BEC characterised by erasure probability ε and tree
ensemble Tl = Tl(λ, ρ).
The channel first picks a tree from the tree ensemble. The channel
then takes binary inputs X ∈ {0,1} with uniform probability and given
X picks a code-word from CX (T) uniformly at random
Transmits the code-word over the channel and the receiver sees (T,Y)
and estimates X and PBP

Tl (λ,ρ)(ε) denotes the resultant bit error
probability.

For a given degree distribution pair (λ,ρ) for increasing block-lengths
under l rounds of BP-decoding.Then

lim
n→∞

ELDPC(n,λ,ρ)[PBP
b (G , ε, l)] = PBP

T ◦l (λ,ρ)(ε)

This effectively relates the decoding of LDPC code under increasing
block-length to resemble the tree channel.

Convergence of iterative Decoding Methods 36 / 64

Convergence to tree channel

Let us describe the tree channel and show how it links to LDPC decoding
for large block lengths

Consider the BEC characterised by erasure probability ε and tree
ensemble Tl = Tl(λ, ρ).
The channel first picks a tree from the tree ensemble. The channel
then takes binary inputs X ∈ {0,1} with uniform probability and given
X picks a code-word from CX (T) uniformly at random
Transmits the code-word over the channel and the receiver sees (T,Y)
and estimates X and PBP

Tl (λ,ρ)(ε) denotes the resultant bit error
probability.

For a given degree distribution pair (λ,ρ) for increasing block-lengths
under l rounds of BP-decoding.Then

lim
n→∞

ELDPC(n,λ,ρ)[PBP
b (G , ε, l)] = PBP

T ◦l (λ,ρ)(ε)

This effectively relates the decoding of LDPC code under increasing
block-length to resemble the tree channel.

Convergence of iterative Decoding Methods 36 / 64

Convergence to tree channel

Let us describe the tree channel and show how it links to LDPC decoding
for large block lengths

Consider the BEC characterised by erasure probability ε and tree
ensemble Tl = Tl(λ, ρ).
The channel first picks a tree from the tree ensemble. The channel
then takes binary inputs X ∈ {0,1} with uniform probability and given
X picks a code-word from CX (T) uniformly at random
Transmits the code-word over the channel and the receiver sees (T,Y)
and estimates X and PBP

Tl (λ,ρ)(ε) denotes the resultant bit error
probability.

For a given degree distribution pair (λ,ρ) for increasing block-lengths
under l rounds of BP-decoding.Then

lim
n→∞

ELDPC(n,λ,ρ)[PBP
b (G , ε, l)] = PBP

T ◦l (λ,ρ)(ε)

This effectively relates the decoding of LDPC code under increasing
block-length to resemble the tree channel.

Convergence of iterative Decoding Methods 36 / 64

Density evolution

Consider a degree distribution pair (λ,ρ) with associated normalised degree
distribution from node perspective L(x) Let ε be channel parameter Define
x−1 =1 and for l ≥ 0 let xl = ελ(1− ρ(1− xl−1).
Then we say PBP

T ◦l (λ,ρ)(ε) = εL(1− ρ(1− xl−1) , PBP
T→l (λ,ρ)(ε)= xl

Some properties:

Define f (ε,x) = ελ(1− ρ(1− x)). Then f(ε,x) is increasing in both
arguments for x,ε ∈ [0,1]

If (λ,ρ) be a degree distribution pair and ε ∈ [0,1]. If PBP
Tl (λ,ρ)(ε)

l→∞−−−→ 0 then PBP
Tl (λ,ρ)(ε′)

l→∞−−−→ 0 for ∀ 0 ≤ ε′ ≤ ε

Monotonicity w.r.t to iteration : Let ε, x0 ∈ [0,1]. For l = 1,2,... define
xl(x0) = f(ε,xl−1(x0)).Then xl(x0) is a monotone sequence converging to
the nearest solution of equation x = f(ε,x)

Convergence of iterative Decoding Methods 37 / 64

Density evolution

Consider a degree distribution pair (λ,ρ) with associated normalised degree
distribution from node perspective L(x) Let ε be channel parameter Define
x−1 =1 and for l ≥ 0 let xl = ελ(1− ρ(1− xl−1).
Then we say PBP

T ◦l (λ,ρ)(ε) = εL(1− ρ(1− xl−1) , PBP
T→l (λ,ρ)(ε)= xl

Some properties:

Define f (ε,x) = ελ(1− ρ(1− x)). Then f(ε,x) is increasing in both
arguments for x,ε ∈ [0,1]

If (λ,ρ) be a degree distribution pair and ε ∈ [0,1]. If PBP
Tl (λ,ρ)(ε)

l→∞−−−→ 0 then PBP
Tl (λ,ρ)(ε′)

l→∞−−−→ 0 for ∀ 0 ≤ ε′ ≤ ε

Monotonicity w.r.t to iteration : Let ε, x0 ∈ [0,1]. For l = 1,2,... define
xl(x0) = f(ε,xl−1(x0)).Then xl(x0) is a monotone sequence converging to
the nearest solution of equation x = f(ε,x)

Convergence of iterative Decoding Methods 37 / 64

Density evolution

Consider a degree distribution pair (λ,ρ) with associated normalised degree
distribution from node perspective L(x) Let ε be channel parameter Define
x−1 =1 and for l ≥ 0 let xl = ελ(1− ρ(1− xl−1).
Then we say PBP

T ◦l (λ,ρ)(ε) = εL(1− ρ(1− xl−1) , PBP
T→l (λ,ρ)(ε)= xl

Some properties:

Define f (ε,x) = ελ(1− ρ(1− x)). Then f(ε,x) is increasing in both
arguments for x,ε ∈ [0,1]

If (λ,ρ) be a degree distribution pair and ε ∈ [0,1]. If PBP
Tl (λ,ρ)(ε)

l→∞−−−→ 0 then PBP
Tl (λ,ρ)(ε′)

l→∞−−−→ 0 for ∀ 0 ≤ ε′ ≤ ε

Monotonicity w.r.t to iteration : Let ε, x0 ∈ [0,1]. For l = 1,2,... define
xl(x0) = f(ε,xl−1(x0)).Then xl(x0) is a monotone sequence converging to
the nearest solution of equation x = f(ε,x)

Convergence of iterative Decoding Methods 37 / 64

Threshold

Here we are interested in ε where the probability of error no longer remains
0 even under infinitely large number of decoding iterations
More formally we define as

εBP(λ, ρ)= sup{ε ∈ [0, 1] : PBP
Tl (λ,ρ)(ε′)

l→∞−−−→ 0}

An equivalent definition: For a degree distribution (λ,ρ) and ε ∈ [0,1]
let f (ε,x) = ελ(1− ρ(1− x))

εBP(λ, ρ) = sup{ε ∈ [0, 1] : x = f (ε, x) has no solution in (0,1) }
εBP(λ, ρ) = inf{ε ∈ [0, 1] : x = f (ε, x) has a solution in (0,1) }

Critical point: Given a degree distribution pair (λ,ρ) we say it has a
critical point xBP if

f(εBP ,xBP) = xBP and ∂f (εBP ,xBP)
∂x

∣∣∣
x=xBP

= 1

Convergence of iterative Decoding Methods 38 / 64

Threshold

Here we are interested in ε where the probability of error no longer remains
0 even under infinitely large number of decoding iterations
More formally we define as

εBP(λ, ρ)= sup{ε ∈ [0, 1] : PBP
Tl (λ,ρ)(ε′)

l→∞−−−→ 0}
An equivalent definition: For a degree distribution (λ,ρ) and ε ∈ [0,1]
let f (ε,x) = ελ(1− ρ(1− x))

εBP(λ, ρ) = sup{ε ∈ [0, 1] : x = f (ε, x) has no solution in (0,1) }
εBP(λ, ρ) = inf{ε ∈ [0, 1] : x = f (ε, x) has a solution in (0,1) }

Critical point: Given a degree distribution pair (λ,ρ) we say it has a
critical point xBP if

f(εBP ,xBP) = xBP and ∂f (εBP ,xBP)
∂x

∣∣∣
x=xBP

= 1

Convergence of iterative Decoding Methods 38 / 64

Threshold

Here we are interested in ε where the probability of error no longer remains
0 even under infinitely large number of decoding iterations
More formally we define as

εBP(λ, ρ)= sup{ε ∈ [0, 1] : PBP
Tl (λ,ρ)(ε′)

l→∞−−−→ 0}
An equivalent definition: For a degree distribution (λ,ρ) and ε ∈ [0,1]
let f (ε,x) = ελ(1− ρ(1− x))

εBP(λ, ρ) = sup{ε ∈ [0, 1] : x = f (ε, x) has no solution in (0,1) }
εBP(λ, ρ) = inf{ε ∈ [0, 1] : x = f (ε, x) has a solution in (0,1) }

Critical point: Given a degree distribution pair (λ,ρ) we say it has a
critical point xBP if

f(εBP ,xBP) = xBP and ∂f (εBP ,xBP)
∂x

∣∣∣
x=xBP

= 1

Convergence of iterative Decoding Methods 38 / 64

Some comparison

We compare the threshold on ε with Shannon threshold of the channel.

Figure: Comparison with Shannon threshold for regular distribution pairs

Here we just give example of (f(ε, x) - x) changes with ε around critical
point plotted as a function of x

Figure: Graphical determination for two different degree distributions with
εShannon = 1

2 for both distributions

This figure attempts to demonstrate the fact that as εBP(λ, ρ) goes closer
to εShannon(λ, ρ), number of critical points tend to increase.

Convergence of iterative Decoding Methods 39 / 64

Some comparison

We compare the threshold on ε with Shannon threshold of the channel.

Figure: Comparison with Shannon threshold for regular distribution pairs

Here we just give example of (f(ε, x) - x) changes with ε around critical
point plotted as a function of x

Figure: Graphical determination for two different degree distributions with
εShannon = 1

2 for both distributions

This figure attempts to demonstrate the fact that as εBP(λ, ρ) goes closer
to εShannon(λ, ρ), number of critical points tend to increase.

Convergence of iterative Decoding Methods 39 / 64

Introduction: Convolutional codes

Convolutional codes map infinite streams of data into infinite streams of
data typically through a linear filter. Typically, we denote a linear filter
G (D) = p(D)

q(D) with memory m = max(deg(p(D)), deg(q(D)))

Without loss of generality, we assume q0 = 1 where q(D) =
∑

i qiD
i and

p(D) =
∑

i piD
i . Also we assume these codes to be over a binary finite

field thus, the coefficients can be 0 or 1.

Figure: Binary symmetric recursive convolutional encoder with m = 2 and

G (D) = 1+D+D2

1+D2 . The block D denotes a delay element.

Convergence of iterative Decoding Methods 40 / 64

Introduction: Convolutional codes

Convolutional codes map infinite streams of data into infinite streams of
data typically through a linear filter. Typically, we denote a linear filter
G (D) = p(D)

q(D) with memory m = max(deg(p(D)), deg(q(D)))

Without loss of generality, we assume q0 = 1 where q(D) =
∑

i qiD
i and

p(D) =
∑

i piD
i . Also we assume these codes to be over a binary finite

field thus, the coefficients can be 0 or 1.

Figure: Binary symmetric recursive convolutional encoder with m = 2 and

G (D) = 1+D+D2

1+D2 . The block D denotes a delay element.

Convergence of iterative Decoding Methods 40 / 64

Introduction: Convolutional codes

Convolutional codes map infinite streams of data into infinite streams of
data typically through a linear filter. Typically, we denote a linear filter
G (D) = p(D)

q(D) with memory m = max(deg(p(D)), deg(q(D)))

Without loss of generality, we assume q0 = 1 where q(D) =
∑

i qiD
i and

p(D) =
∑

i piD
i . Also we assume these codes to be over a binary finite

field thus, the coefficients can be 0 or 1.

Figure: Binary symmetric recursive convolutional encoder with m = 2 and

G (D) = 1+D+D2

1+D2 . The block D denotes a delay element.

Convergence of iterative Decoding Methods 40 / 64

Termination of convolutional codes

We consider ”terminated” schemes in this part, thus we consider the
input codeword as x s = {x s1 , x s2 , ..x sn , 0, 0, ...0︸ ︷︷ ︸

m times

}. We keep the last m

components to be zero. The output to this codeword is denoted as
xp = (xp1 , x

p
2 , ..., x

p
n+m)

However, we consider a slight deviation in this terminated setting. For
the first n steps the filter is G (D) whereas for the next m steps the
filter is G̃ (D) = p(D).

We consider the so-called state space model where state σi−1 denotes
the content of the shift register just before i th bit x si for
i = 1, 2, ..n + m. Thus, we have the sequence (x si , σi−1)→ (xpi , σi−1)
where xpi denotes the i th bit of the output sequence xp.

Convergence of iterative Decoding Methods 41 / 64

Termination of convolutional codes

We consider ”terminated” schemes in this part, thus we consider the
input codeword as x s = {x s1 , x s2 , ..x sn , 0, 0, ...0︸ ︷︷ ︸

m times

}. We keep the last m

components to be zero. The output to this codeword is denoted as
xp = (xp1 , x

p
2 , ..., x

p
n+m)

However, we consider a slight deviation in this terminated setting. For
the first n steps the filter is G (D) whereas for the next m steps the
filter is G̃ (D) = p(D).

We consider the so-called state space model where state σi−1 denotes
the content of the shift register just before i th bit x si for
i = 1, 2, ..n + m. Thus, we have the sequence (x si , σi−1)→ (xpi , σi−1)
where xpi denotes the i th bit of the output sequence xp.

Convergence of iterative Decoding Methods 41 / 64

Termination of convolutional codes

We consider ”terminated” schemes in this part, thus we consider the
input codeword as x s = {x s1 , x s2 , ..x sn , 0, 0, ...0︸ ︷︷ ︸

m times

}. We keep the last m

components to be zero. The output to this codeword is denoted as
xp = (xp1 , x

p
2 , ..., x

p
n+m)

However, we consider a slight deviation in this terminated setting. For
the first n steps the filter is G (D) whereas for the next m steps the
filter is G̃ (D) = p(D).

We consider the so-called state space model where state σi−1 denotes
the content of the shift register just before i th bit x si for
i = 1, 2, ..n + m. Thus, we have the sequence (x si , σi−1)→ (xpi , σi−1)
where xpi denotes the i th bit of the output sequence xp.

Convergence of iterative Decoding Methods 41 / 64

State space representation contn..

The initial state is σ0 = (0, 0, .., 0) For 1 ≤ i ≤ m, the evolution is
described by σi = σi−1A + x si C , xpi = σi−1B

T + x si p0 where matrices A,B
and C are defined below.

A =


q1 1 0 0
q2 0 1 0
...

...
...

. . .
...

qm−1 0 0 0 1
qm 0 0 0 0


m×m

B=


p1 + p0.q1

p2 + p0.q2
...

pm−1 + p0.qm−1

pm + p0qm


m×1

CT =


1
0
...
0
0


m×1

We denote the encoding map as xp = γ(x s). Thus, the code C (G , n) is
denoted as C (G , n) = {(x s , γ(x s)) : x s = (x s1 , x

s
2 , ..., x

s
n , 0, 0..0︸ ︷︷ ︸

m times

)},x si ∈ F2

Convergence of iterative Decoding Methods 42 / 64

State space representation contn..

The initial state is σ0 = (0, 0, .., 0) For 1 ≤ i ≤ m, the evolution is
described by σi = σi−1A + x si C , xpi = σi−1B

T + x si p0 where matrices A,B
and C are defined below.

A =


q1 1 0 0
q2 0 1 0
...

...
...

. . .
...

qm−1 0 0 0 1
qm 0 0 0 0


m×m

B=


p1 + p0.q1

p2 + p0.q2
...

pm−1 + p0.qm−1

pm + p0qm


m×1

CT =


1
0
...
0
0


m×1

We denote the encoding map as xp = γ(x s). Thus, the code C (G , n) is
denoted as C (G , n) = {(x s , γ(x s)) : x s = (x s1 , x

s
2 , ..., x

s
n , 0, 0..0︸ ︷︷ ︸

m times

)},x si ∈ F2

Convergence of iterative Decoding Methods 42 / 64

State space representation contn..

The initial state is σ0 = (0, 0, .., 0) For 1 ≤ i ≤ m, the evolution is
described by σi = σi−1A + x si C , xpi = σi−1B

T + x si p0 where matrices A,B
and C are defined below.

A =


q1 1 0 0
q2 0 1 0
...

...
...

. . .
...

qm−1 0 0 0 1
qm 0 0 0 0


m×m

B=


p1 + p0.q1

p2 + p0.q2
...

pm−1 + p0.qm−1

pm + p0qm


m×1

CT =


1
0
...
0
0


m×1

We denote the encoding map as xp = γ(x s). Thus, the code C (G , n) is
denoted as C (G , n) = {(x s , γ(x s)) : x s = (x s1 , x

s
2 , ..., x

s
n , 0, 0..0︸ ︷︷ ︸

m times

)},x si ∈ F2

Convergence of iterative Decoding Methods 42 / 64

Bit-wise MAP decoding

We consider the code-word from the codebook C (G , n) as (X s ,X p) and
(Y s ,Y p) taking values (y s , yp) denotes the output of the channel
(assumed memoryless, without feedback) considering (X s ,X p) was
transmitted. We thus denote the decoding function as x̂ si = x̂ si (y s , yp)

x̂ si = argmax
xsi ∈{0,1}

p(x si |y s , yp)

= argmax
xsi ∈{0,1}

∑
∼xsi

p(x s , xp, σ|y s , yp)

= argmax
xsi ∈{0,1}

∑
∼xsi

p(y s , yp|x s , xp, σ)p(x s , xp, σ)

= argmax
xsi ∈{0,1}

∑
∼xsi

p(y s , yp|x s , xp, σ)p(x s , xp, σ)

= argmax
xsi ∈{0,1}

p(σ0)
∑
∼xsi

n+m∏
j=1

p(y sj |x sj)p(ypj |x
p
j)︸ ︷︷ ︸

channel

p(x sj)︸ ︷︷ ︸
prior

p(xpj , σj |x
s
j , σj−1)︸ ︷︷ ︸

allowed transitions

Convergence of iterative Decoding Methods 43 / 64

Bit-wise MAP decoding

We consider the code-word from the codebook C (G , n) as (X s ,X p) and
(Y s ,Y p) taking values (y s , yp) denotes the output of the channel
(assumed memoryless, without feedback) considering (X s ,X p) was
transmitted. We thus denote the decoding function as x̂ si = x̂ si (y s , yp)

x̂ si = argmax
xsi ∈{0,1}

p(x si |y s , yp)

= argmax
xsi ∈{0,1}

∑
∼xsi

p(x s , xp, σ|y s , yp)

= argmax
xsi ∈{0,1}

∑
∼xsi

p(y s , yp|x s , xp, σ)p(x s , xp, σ)

= argmax
xsi ∈{0,1}

∑
∼xsi

p(y s , yp|x s , xp, σ)p(x s , xp, σ)

= argmax
xsi ∈{0,1}

p(σ0)
∑
∼xsi

n+m∏
j=1

p(y sj |x sj)p(ypj |x
p
j)︸ ︷︷ ︸

channel

p(x sj)︸ ︷︷ ︸
prior

p(xpj , σj |x
s
j , σj−1)︸ ︷︷ ︸

allowed transitions

Convergence of iterative Decoding Methods 43 / 64

Forney style factor graph representation

Figure: FSFG for MAP decoding of C(G,n)

This is essentially the BCJR algorithm and the bitwise MAP estimate can
be computed at each step using 2 flows of messages one from the top and
one from bottom (denoted by α flow and β flow) and the decision step
which is called the γ-step.

Convergence of iterative Decoding Methods 44 / 64

Forney style factor graph representation

Figure: FSFG for MAP decoding of C(G,n)

This is essentially the BCJR algorithm and the bitwise MAP estimate can
be computed at each step using 2 flows of messages one from the top and
one from bottom (denoted by α flow and β flow) and the decision step
which is called the γ-step.

Convergence of iterative Decoding Methods 44 / 64

Flows of information in BCJR algorithm

Let us define the α-flow. The term αΣi
(σi) is defined as

p(σi , y
s
1 , y

s
2 , ..y

s
i , y

p
1 , y

p
2 , ..., y

s
i) which can be shown to be∑

xsi ,x
p
i ,σi−1

p(xpi , σi |x
s
i , σi−1)︸ ︷︷ ︸

kernel

p(y si |x si)p(ypi |x
p
i)p(x si)αΣi−1

(σi−1)︸ ︷︷ ︸
product of incoming messages

Let us define the β-flow. The term βΣi
(σi) is defined as

p(y si+1, ..., y
s
n+m, y

p
i+1, ..., y

p
n+m|σi) which can be shown to be

βΣi−1
(σi−1) =

∑
xsi ,x

p
i ,σi−1

p(xpi , σi |x
s
i , σi−1)︸ ︷︷ ︸

kernel

p(y si |x si)p(ypi |x
p
i)p(x si)βΣi

(σi)︸ ︷︷ ︸
product of incoming messages

Let us define the decision step at each bit. We can show that the
decision step can be written at every bit as
p(x si , y

s
1 , ..y

s
n , y

p
1 , ..y

p
n) =

p(x si)p(y si |x si)
∑
∼xsi

p(xpi , σi |x
s
i , σi−1)︸ ︷︷ ︸

kernel

p(ypi |x
p
i)βΣi

(σi)αΣi−1
(σi−1)

Convergence of iterative Decoding Methods 45 / 64

Flows of information in BCJR algorithm

Let us define the α-flow. The term αΣi
(σi) is defined as

p(σi , y
s
1 , y

s
2 , ..y

s
i , y

p
1 , y

p
2 , ..., y

s
i) which can be shown to be∑

xsi ,x
p
i ,σi−1

p(xpi , σi |x
s
i , σi−1)︸ ︷︷ ︸

kernel

p(y si |x si)p(ypi |x
p
i)p(x si)αΣi−1

(σi−1)︸ ︷︷ ︸
product of incoming messages

Let us define the β-flow. The term βΣi
(σi) is defined as

p(y si+1, ..., y
s
n+m, y

p
i+1, ..., y

p
n+m|σi) which can be shown to be

βΣi−1
(σi−1) =

∑
xsi ,x

p
i ,σi−1

p(xpi , σi |x
s
i , σi−1)︸ ︷︷ ︸

kernel

p(y si |x si)p(ypi |x
p
i)p(x si)βΣi

(σi)︸ ︷︷ ︸
product of incoming messages

Let us define the decision step at each bit. We can show that the
decision step can be written at every bit as
p(x si , y

s
1 , ..y

s
n , y

p
1 , ..y

p
n) =

p(x si)p(y si |x si)
∑
∼xsi

p(xpi , σi |x
s
i , σi−1)︸ ︷︷ ︸

kernel

p(ypi |x
p
i)βΣi

(σi)αΣi−1
(σi−1)

Convergence of iterative Decoding Methods 45 / 64

Flows of information in BCJR algorithm

Let us define the α-flow. The term αΣi
(σi) is defined as

p(σi , y
s
1 , y

s
2 , ..y

s
i , y

p
1 , y

p
2 , ..., y

s
i) which can be shown to be∑

xsi ,x
p
i ,σi−1

p(xpi , σi |x
s
i , σi−1)︸ ︷︷ ︸

kernel

p(y si |x si)p(ypi |x
p
i)p(x si)αΣi−1

(σi−1)︸ ︷︷ ︸
product of incoming messages

Let us define the β-flow. The term βΣi
(σi) is defined as

p(y si+1, ..., y
s
n+m, y

p
i+1, ..., y

p
n+m|σi) which can be shown to be

βΣi−1
(σi−1) =

∑
xsi ,x

p
i ,σi−1

p(xpi , σi |x
s
i , σi−1)︸ ︷︷ ︸

kernel

p(y si |x si)p(ypi |x
p
i)p(x si)βΣi

(σi)︸ ︷︷ ︸
product of incoming messages

Let us define the decision step at each bit. We can show that the
decision step can be written at every bit as
p(x si , y

s
1 , ..y

s
n , y

p
1 , ..y

p
n) =

p(x si)p(y si |x si)
∑
∼xsi

p(xpi , σi |x
s
i , σi−1)︸ ︷︷ ︸

kernel

p(ypi |x
p
i)βΣi

(σi)αΣi−1
(σi−1)

Convergence of iterative Decoding Methods 45 / 64

Concatenated codes

We consider a parallel con-catenated code. Here we permute the input
sequence through permutations denoted by π1 and π2. Similar to the
previous example we denote x = (x1, x2, ..., xn, 0, 0..0︸ ︷︷ ︸

m times

) as input to the filter

G (D) and the feedback is removed for the last m steps.

Thus, we denote the code as C (G , n, π) =
{(x , γ(π1(x)), γ(π2(x))) : x = (x1, ..xn, 0, ..., 0︸ ︷︷ ︸

m times

); xi ∈ F2}. For a fixed G

and n, P(G , n) denotes the ensemble of codes generated by varying π over
all the ensembles on n + m bits that fix the last m bits and ensure uniform
probability distribution. Thus C (G , n, π) is a code chosen at random from
the ensemble.

Figure: Encoder for C (G = D4+D2+1
D5+D2+1 , n, π = (π1, π2)) where π1 denotes the

identity permutation

Convergence of iterative Decoding Methods 46 / 64

Concatenated codes

We consider a parallel con-catenated code. Here we permute the input
sequence through permutations denoted by π1 and π2. Similar to the
previous example we denote x = (x1, x2, ..., xn, 0, 0..0︸ ︷︷ ︸

m times

) as input to the filter

G (D) and the feedback is removed for the last m steps.
Thus, we denote the code as C (G , n, π) =
{(x , γ(π1(x)), γ(π2(x))) : x = (x1, ..xn, 0, ..., 0︸ ︷︷ ︸

m times

); xi ∈ F2}. For a fixed G

and n, P(G , n) denotes the ensemble of codes generated by varying π over
all the ensembles on n + m bits that fix the last m bits and ensure uniform
probability distribution. Thus C (G , n, π) is a code chosen at random from
the ensemble.

Figure: Encoder for C (G = D4+D2+1
D5+D2+1 , n, π = (π1, π2)) where π1 denotes the

identity permutation

Convergence of iterative Decoding Methods 46 / 64

Punctured turbo codes

Often, we wish to puncture(delete) certain bits to adjust the rate of
the code. For example if every second bit of xp1 and xp2 is deleted,
we get a rate 1

2 code.

More generally, we wish to have codes in range 1
3 ≤ r ≤ 1. For this,

we may puncture each bit of parity stream with probability 3r−1
2r .

This ensemble of codes is denoted by P(G , n, π, r)

Convergence of iterative Decoding Methods 47 / 64

Punctured turbo codes

Often, we wish to puncture(delete) certain bits to adjust the rate of
the code. For example if every second bit of xp1 and xp2 is deleted,
we get a rate 1

2 code.

More generally, we wish to have codes in range 1
3 ≤ r ≤ 1. For this,

we may puncture each bit of parity stream with probability 3r−1
2r .

This ensemble of codes is denoted by P(G , n, π, r)

Convergence of iterative Decoding Methods 47 / 64

Bit- Wise MAP Decoding

The bit-wise MAP decoding can be decoded as:

x̂MAP
i (y s , yp1, yp2)

= argmax
xsi ∈{0,1}

∑
∼xsi

p(x s , xp1, xp2, σ1, σ2, y s , yp1, yp2)

= argmax
xsi ∈{0,1}

∑
∼xsi

n+m∏
j=1

p(x sj)︸ ︷︷ ︸
prior

p(y sj |x sj)p(yp1
j |x

p1
j)p(yp2

j |x
p2
j)︸ ︷︷ ︸

channel

p(σ1
0)p(σ2

0)
n+m∏
j=1

p(xp1
j , σj |x s1

j , σj−1)︸ ︷︷ ︸
code 1

p(xpj , σj |x
s2
j , σj−1)︸ ︷︷ ︸

code 2

Note that we denote x s1 = π1(x s) and x s2 = π2(x s)

Convergence of iterative Decoding Methods 48 / 64

FSFG denoting the decoding equation

Figure: FSFG for the optimum bit wise decoding

However, it is important to note that this graph is not a tree, thus
contains cycles, hence the schedule of decoding process might matter
which we shall see in the subsequent sections.

Convergence of iterative Decoding Methods 49 / 64

Turbo schedule

Let us denote each of the convolutional code as a component. In
each iteration, we freeze the messages in one component and decode
the other component by running a complete iteration of BCJR
algorithm. We initialise both the messages with zero.

For example, in the first iteration,we freeze the messages in the
second component and run BCJR algorithm in the first component.

In the second iteration, we freeze the messages in the first component
and run BCJR algorithm over the first component.

However, note that that in this iteration, the messages that flow
through permutation π1 are no longer zero unlike the previous
iteration.

Convergence of iterative Decoding Methods 50 / 64

Turbo schedule

Let us denote each of the convolutional code as a component. In
each iteration, we freeze the messages in one component and decode
the other component by running a complete iteration of BCJR
algorithm. We initialise both the messages with zero.

For example, in the first iteration,we freeze the messages in the
second component and run BCJR algorithm in the first component.

In the second iteration, we freeze the messages in the first component
and run BCJR algorithm over the first component.

However, note that that in this iteration, the messages that flow
through permutation π1 are no longer zero unlike the previous
iteration.

Convergence of iterative Decoding Methods 50 / 64

Turbo schedule

Let us denote each of the convolutional code as a component. In
each iteration, we freeze the messages in one component and decode
the other component by running a complete iteration of BCJR
algorithm. We initialise both the messages with zero.

For example, in the first iteration,we freeze the messages in the
second component and run BCJR algorithm in the first component.

In the second iteration, we freeze the messages in the first component
and run BCJR algorithm over the first component.

However, note that that in this iteration, the messages that flow
through permutation π1 are no longer zero unlike the previous
iteration.

Convergence of iterative Decoding Methods 50 / 64

Turbo schedule

Let us denote each of the convolutional code as a component. In
each iteration, we freeze the messages in one component and decode
the other component by running a complete iteration of BCJR
algorithm. We initialise both the messages with zero.

For example, in the first iteration,we freeze the messages in the
second component and run BCJR algorithm in the first component.

In the second iteration, we freeze the messages in the first component
and run BCJR algorithm over the first component.

However, note that that in this iteration, the messages that flow
through permutation π1 are no longer zero unlike the previous
iteration.

Convergence of iterative Decoding Methods 50 / 64

Some simplifications

The decoder is symmetric since MAP decoding is performed on a
linear code. Thus, output is symmetric given all input densities are
symmetric if transmission takes over a BMS channel.

We consider a windowed decoding algorithm i.e. instead of running
the BCJR algorithm over the whole section, we run it extending w
sections to the left and w sections to the right.

Figure: Computation graph corresponding to (w=1) iterative decoding

Convergence of iterative Decoding Methods 51 / 64

Some simplifications

The decoder is symmetric since MAP decoding is performed on a
linear code. Thus, output is symmetric given all input densities are
symmetric if transmission takes over a BMS channel.

We consider a windowed decoding algorithm i.e. instead of running
the BCJR algorithm over the whole section, we run it extending w
sections to the left and w sections to the right.

Figure: Computation graph corresponding to (w=1) iterative decoding

Convergence of iterative Decoding Methods 51 / 64

Some simplifications

The decoder is symmetric since MAP decoding is performed on a
linear code. Thus, output is symmetric given all input densities are
symmetric if transmission takes over a BMS channel.

We consider a windowed decoding algorithm i.e. instead of running
the BCJR algorithm over the whole section, we run it extending w
sections to the left and w sections to the right.

Figure: Computation graph corresponding to (w=1) iterative decoding

Convergence of iterative Decoding Methods 51 / 64

Density evolution

As we discussed in the previous example with fixed trellis, the
quantity that would be computed is
liml→∞ limw→∞ limn→∞EP(G,n)[Pb(C , a, l)] which can actually be
shown to be equal to limw→∞ liml→∞ limn→∞EP(G,n)[Pb(C , a, l)]

Let us define the following maps on a an infinite trellis defined by
G (D) as shown in Fig. 26. Note that the systematic bits pass
through a channel of L-density a and parity bits pass through channel
of L-density b. The resulting outgoing densities for the systematic
and parity bits are denoted by c and d .

Figure: Definition of c = Γs
G (a, b) and d = Γp

G (a, b) of a bi-directional channel of
rational function G (D)

Convergence of iterative Decoding Methods 52 / 64

Density evolution

As we discussed in the previous example with fixed trellis, the
quantity that would be computed is
liml→∞ limw→∞ limn→∞EP(G,n)[Pb(C , a, l)] which can actually be
shown to be equal to limw→∞ liml→∞ limn→∞EP(G,n)[Pb(C , a, l)]
Let us define the following maps on a an infinite trellis defined by
G (D) as shown in Fig. 26. Note that the systematic bits pass
through a channel of L-density a and parity bits pass through channel
of L-density b. The resulting outgoing densities for the systematic
and parity bits are denoted by c and d .

Figure: Definition of c = Γs
G (a, b) and d = Γp

G (a, b) of a bi-directional channel of
rational function G (D)

Convergence of iterative Decoding Methods 52 / 64

Density evolution

As we discussed in the previous example with fixed trellis, the
quantity that would be computed is
liml→∞ limw→∞ limn→∞EP(G,n)[Pb(C , a, l)] which can actually be
shown to be equal to limw→∞ liml→∞ limn→∞EP(G,n)[Pb(C , a, l)]
Let us define the following maps on a an infinite trellis defined by
G (D) as shown in Fig. 26. Note that the systematic bits pass
through a channel of L-density a and parity bits pass through channel
of L-density b. The resulting outgoing densities for the systematic
and parity bits are denoted by c and d .

Figure: Definition of c = Γs
G (a, b) and d = Γp

G (a, b) of a bi-directional channel of
rational function G (D)

Convergence of iterative Decoding Methods 52 / 64

Density evolution(contn..)

Consider a binary polynomial p(D) of deg(p). We consider the
time-reversed polynomial p̂(D) = Ddeg(p)p(1

D) and it is extended for q(D)

as well and thus define Ĝ (D) = p̂(D)
q̂(D) .

The following theorem characterises density evolution for parallel
concatenated codes.

Theorem

Consider a density evolution P(G , r) when transmission takes place over a
BMS-channel with L-density aBMSC and the turbo schedule is used. Let cl
denote the density from the trellis towards systematic bits in the l th

iteration. Then for c0 = ∆0, we have cl = Γs
G (aBMSC ~ cl−1, aBMSC)

.
This theorem can be proven using the definition of the algorithm of turbo
schedule However, it is difficult to compute Γs

G as the states might be in
2m − 1 dimensions where m is the memory of channel, hence often
determined by sampling.

Convergence of iterative Decoding Methods 53 / 64

Example of density evolution

Figure: Evolution of cl for ensemble P(G = 21
37 , r = 1

2), an alternating puncturing
pattern,transmission over BAWGNC(σ). For the left image σ=0.093 where the
densities move to the right towards ∆∞ whereas the right image has σ = 0.95
where the densities converge to a fixed point density.

Convergence of iterative Decoding Methods 54 / 64

Conjecture on stability criterion

Conjecture

Consider the ensemble P(G , r) and let D(x , y) =
∑

i di (y)x i denote the
detour generating function associated with G(taking appropriate
puncturing into account). Assume the transmission takes place over BMS
channel with L− density a. Then the fixed point corresponding to correct
decoding is stable iff 2B(a)d2(B(a)) < 1.

Recall that detour denote the codewords which originate from state zero
at time zero , diverge in the first transition from the zero state and stops
the time it returns in the zero state.

Convergence of iterative Decoding Methods 55 / 64

EXIT charts

Note that the densities cl as defined in previous theorem may have
complex representation.
To understand how fast the decoding process is taking place,we often
look at the entropy emitted in every iteration.

Definition

The density evolution process according to the EXIT chart method with
respect to channel family {aBAWGNC(h)} can be specified as follows. Let
h0 = 1. For l ≥ 1,

hl = H(Γs
G (aBMSC ~ aBAWGNC(h(l−1)), aBMSC))

. We define hl as the entropy emitted in the l th iteration according to
EXIT chart method The condition for convergence may be stated as:

H(Γs
G (aBMSC ~ aBAWGNC(h), aBMSC)) < h, h ∈ (0, 1)

.
Convergence of iterative Decoding Methods 56 / 64

EXIT charts contn..

Figure: Exit chart method P(G = 21/37, r = 1/2) on BAWGNC channel. In the
left picture the parameter σ = 0.93 whereas the right side has σ = 0.941

Note that the EXIT charts denote the ”actions” of each component code
during the turbo decoding process, hence it is symmetric unlike the
example for LDPC codes.

Convergence of iterative Decoding Methods 57 / 64

GEXIT curves

In the previous example, we plotted EXIT curves to visualise the decoding
process. Similarly, we can also plot the code as a response to a channel
family {aBMSC(h)} which is more difficult to compute thus we
corresponding BP-GEXIT curve i.e., we use the densities the output of
iterative decoder instead of MAP densities.

Lemma

Consider the ensemble P(G , r). Assume that transmission takes place over
a smooth family of BMS channels ordered by degradation characterised by
their L-densities {aBMSC(h)} where h denotes the entropy of the channel.
For each h, let ch denote the fixed point density of the density evolution
process i.e., ch = Γs(aBMSC(h) ~ ch, aBMSC(h)). Then the BP GEXIT curve
is given in parametric form as
(h,
∫

(rch ~ ch + (1− r)Γp(aBMSC(h) ~ ch, aBMSC(h))lBMSC(y)dy) where

lBMSC(y) is the GEXIT kernel associated with BMS channel.

Convergence of iterative Decoding Methods 58 / 64

GEXIT Curve example

Figure: BP GEXIT curve for the ensemble P(G = 7/5, r = 1/3) over BAGNC(h).
The BP and MAP thresholds coincide. Note that
hBP/MAP = 0.559(σMAP/BP = 1.073)

Convergence of iterative Decoding Methods 59 / 64

Weight distribution

Let C (G , n) denote the convolutional code of input length n defined by
the binary rational function G . Let ai ,o,n count the number of codewords
of input weight i and output weight o. We define the associating function
A(x , y , z) =

∑
ai ,o,nx

iyozn. We define A(x , y , z) as the input-output
weight generating function of the code C (G , n).

Consider the transfer matrix M(x , y). Note that it encodes the state
transition of the trellis corresponding to rational function G . For example,
consider the transfer function of rational function G = 7/5.

M(x , y) =

(00) (01) (10) (11)


(00) 1 xy 0 0
(01) 0 1 y x
(10) xy 1 0 0
(11) 0 0 x y

Recall that for the last m steps the feedback is eliminated and we denote
the transfer function as M̄ corresponding to the transformer function p/1.
Thus, A(x , y , z) =

∑
n[Mn(x , y)M̄(y)]0,0z

n = [(I − zM(x , y))−1M̄m(y)]0,0

Convergence of iterative Decoding Methods 60 / 64

Weight distribution

Let C (G , n) denote the convolutional code of input length n defined by
the binary rational function G . Let ai ,o,n count the number of codewords
of input weight i and output weight o. We define the associating function
A(x , y , z) =

∑
ai ,o,nx

iyozn. We define A(x , y , z) as the input-output
weight generating function of the code C (G , n).
Consider the transfer matrix M(x , y). Note that it encodes the state
transition of the trellis corresponding to rational function G . For example,
consider the transfer function of rational function G = 7/5.

M(x , y) =

(00) (01) (10) (11)


(00) 1 xy 0 0
(01) 0 1 y x
(10) xy 1 0 0
(11) 0 0 x y

Recall that for the last m steps the feedback is eliminated and we denote
the transfer function as M̄ corresponding to the transformer function p/1.
Thus, A(x , y , z) =

∑
n[Mn(x , y)M̄(y)]0,0z

n = [(I − zM(x , y))−1M̄m(y)]0,0

Convergence of iterative Decoding Methods 60 / 64

Weight distribution

Let C (G , n) denote the convolutional code of input length n defined by
the binary rational function G . Let ai ,o,n count the number of codewords
of input weight i and output weight o. We define the associating function
A(x , y , z) =

∑
ai ,o,nx

iyozn. We define A(x , y , z) as the input-output
weight generating function of the code C (G , n).
Consider the transfer matrix M(x , y). Note that it encodes the state
transition of the trellis corresponding to rational function G . For example,
consider the transfer function of rational function G = 7/5.

M(x , y) =

(00) (01) (10) (11)


(00) 1 xy 0 0
(01) 0 1 y x
(10) xy 1 0 0
(11) 0 0 x y

Recall that for the last m steps the feedback is eliminated and we denote
the transfer function as M̄ corresponding to the transformer function p/1.
Thus, A(x , y , z) =

∑
n[Mn(x , y)M̄(y)]0,0z

n = [(I − zM(x , y))−1M̄m(y)]0,0

Convergence of iterative Decoding Methods 60 / 64

Lemma on detour generating functions

We can define the regular weight distribution of the code C (G , n) as
follows where A(x , z) = A(x , y = x , z) =

∑
w ,n x

wzn with coefficients
aw ,n =

∑
i ,o:i+o=w ai ,o,n which counts aw ,n counts the number of

codewords of length n and weight w .

Lemma

Consider the binary rational function G and let M(x , y) be the
corresponding function where x encodes the input weight and y the output
weight. Let M .(x , y) be equal to M(x , y) except for entry (0, 0) which
should be set equal to 0. Let D(x , y) be the generating function counting
detours. Then we have

D(x , y) = 1− 1

[(I −M .(x , y))−1]0,0

Recall that detour denote codeowords that start in state zero, diverges in
the first transition state at time zero and stops the first time it reaches
state zero.

Convergence of iterative Decoding Methods 61 / 64

Lemma on detour generating functions

We can define the regular weight distribution of the code C (G , n) as
follows where A(x , z) = A(x , y = x , z) =

∑
w ,n x

wzn with coefficients
aw ,n =

∑
i ,o:i+o=w ai ,o,n which counts aw ,n counts the number of

codewords of length n and weight w .

Lemma

Consider the binary rational function G and let M(x , y) be the
corresponding function where x encodes the input weight and y the output
weight. Let M .(x , y) be equal to M(x , y) except for entry (0, 0) which
should be set equal to 0. Let D(x , y) be the generating function counting
detours. Then we have

D(x , y) = 1− 1

[(I −M .(x , y))−1]0,0

Recall that detour denote codeowords that start in state zero, diverges in
the first transition state at time zero and stops the first time it reaches
state zero.

Convergence of iterative Decoding Methods 61 / 64

Concatenated ensembles

Let us talk about the expected weight distribution of convolutional codes
where

Theorem

Consider the ensemble P(n,G , r).Let A 3r−1
2r

(x , y , z) =
∑

i ,o,n x
iyozn

denote the generating function of input-output weight distribution of
C (G , n) under the puncturing of rate 3r−1

2r so that the overall rate of the
ensemble P is r . Let P(x , y , z) =

∑
i ,o,n pi ,o,nx

iyozn denote the
generating function of the expected input-output weight distribution of
P(G , n, r) where the expectation is taken over all possible interleavers.

Then, pi ,o,n =
∑

j ai,j,nai,o−j,n

(ni)

Convergence of iterative Decoding Methods 62 / 64

Concatenated ensembles

Let us talk about the expected weight distribution of convolutional codes
where

Theorem

Consider the ensemble P(n,G , r).Let A 3r−1
2r

(x , y , z) =
∑

i ,o,n x
iyozn

denote the generating function of input-output weight distribution of
C (G , n) under the puncturing of rate 3r−1

2r so that the overall rate of the
ensemble P is r . Let P(x , y , z) =

∑
i ,o,n pi ,o,nx

iyozn denote the
generating function of the expected input-output weight distribution of
P(G , n, r) where the expectation is taken over all possible interleavers.

Then, pi ,o,n =
∑

j ai,j,nai,o−j,n

(ni)

Convergence of iterative Decoding Methods 62 / 64

References

[1] Richardson, T., and Urbanke, R. Modern Coding Theory.
Cambridge University Press, USA, 2008.

Convergence of iterative Decoding Methods 63 / 64

Thank You

Convergence of iterative Decoding Methods 64 / 64

