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Overview

Contextual Bandits ( 2-3 slides max)
Model Selection ( 2-3 slides max)
Linear Contextual Bandit ( 1-2 slides max)

Problem 1 : Pure Exploration

o Problem statement ( 1-2 slides max)
o Experiments ( 2-3 slides max)

Problem 2 : Arms with different costs

e Problem statement ( 1-2 slides max)
o Experiments ( 2-3 slides max)

References( 1-2 slides max)
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Contextual Bandits

Fort=1,2...T:
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Contextual Bandits

Fort=1,2...T:
@ Observe x; € X.
@ Take action a; € A.
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Contextual Bandits

Fort=1,2...T:
@ Observe x; € X.
@ Take action a; € A.
e Incur loss It(a¢) € [0, 1].

@ {x¢ It(.)} are drawn i.i.d. from a fixed distribution D where
i A—[0,1]
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Contextual Bandits

Fort=1,2...T:
@ Observe x; € X.
@ Take action a; € A.
e Incur loss It(a¢) € [0, 1].

@ {x¢ It(.)} are drawn i.i.d. from a fixed distribution D where
i A—[0,1]

-
Regret(T) = Z le(ae) — le(7* (x¢))
t=1

N
||M~|
I,
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Contextual Bandits

Fort=1,2...T:
@ Observe x; € X.
@ Take action a; € A.
e Incur loss It(a¢) € [0, 1].

@ {x¢ It(.)} are drawn i.i.d. from a fixed distribution D where
i A—[0,1]

-
Regret(T) = Z le(ae) — le(7* (x¢))
t=1

N
||M~|
I,

Where,

7 (x) = arg min f*(x, a)
acA

And the goal is to minimize the regret.
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Contextual Bandits

Key assumptions:
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Contextual Bandits

Key assumptions:

@ {x, I} are drawn i.i.d. from a fixed distribution D.
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Contextual Bandits

Key assumptions:
@ {x, I} are drawn i.i.d. from a fixed distribution D.

® s ~ Pyj(.Ix) independently given x;; I; € [0, 1]
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Contextual Bandits

Key assumptions:
@ {x, I} are drawn i.i.d. from a fixed distribution D.
® s ~ Pyj(.Ix) independently given x;; I; € [0, 1]

@ Given a class of F of value reward functions there exists f* € F such
that E[/(a)|x] = f*(x, a)
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Contextual Bandits

Key assumptions:
@ {x, I} are drawn i.i.d. from a fixed distribution D.
® s ~ Pyj(.Ix) independently given x;; I; € [0, 1]
@ Given a class of F of value reward functions there exists f* € F such
that E[/(a)|x] = f*(x, a)
Related work:
e SquareCB [2] algorithm where,

Regret(T) < C.\/(KT):Vd
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Model selection in Statistical learning theory

e {xj,yi}"_; are drawn i.i.d. from a fixed distribution D.

@ Nested function class F1 C F, C F3... € Fp = F where our goal is
to find a f € F that minimizes the £(f(x;), yi) with respect to a loss
function L.

e If f*, the Bayes optimal predictor lies in F,«(where Fp,« is the
smallest class containing f* ) then we can find f, such that,

R(f2) < R(F) + \/W./og(”;*)

w.p. 1-9.

and R : f — [0, 1] is the function that computes the probability of
misclassification (I, ,.1~p[L(f(x)y,)] by the function f .

Note 1: The complexity of the bound scales with m* and not on M.
Note 2: Bayes optimal predictor(f*) is the classifier that minimizes the
probability of misclassification (Ey,; y.1~p[1(f(x)y)]) [5]
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Model selection

{xt, It} are drawn i.i.d. from a fixed distribution D.

@ Nested function class F; C F» C F3... C Fpuy.

@ A set of policy classes nested as a sequence
M CMNyyCMs...CM, =TI

e Each class N, = {w¢|f € Fu}, contains a set of policies 7f where
mr(x) = arg min,c4 f(x, a).

@ The problem is realizable/well-specified in the sense that there exists
index m* (where Fp, is the smallest class containing f* ). such that
E[/(a)|x] = f*(x, a), for all x, a.

The problem of model selection has been addressed in [1] in the case of

linear contextual bandits where their algorithm scales with some function
of the smallest class (m*) containing the optimal function f*.
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Linear Contextual Bandit

Fort=1,2,.... T:
o Feature Maps: {@m}meim),
Gm : (XxA) — RIm.
@ Regression function: Note
o Take action a; € A. that 7, = {(x,a) —
e Incur loss It(a¢) € [0,1]. (8,0m(x,a))|8 € Ra,}
o Realizability: 35* € RAm* st
E[l(a)x] = (8", ¢m=(x, a))

@ Observe x; € X.

Note: V my, mp € [M] satisfying m; < mp, the top m; elements in ¢pm,
are precisely the elements of ¢, .
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Some key assumptions and result

® ¢m(x,a) ~ subG(72) under x ~ D Va € A.

o /(a) — E[/(a)|x] ~ subG(c?) Va€ A and x € X.

® Amin( 2 Exen[dm(x,a).¢m(x;a)T]) > 72 where Amin(.) denotes the
acA

smallest eigen value.

Key result of the theorem

The mod-CB algorithm in [4] guarentees the following regret with
probability at least (1 — 9)

x (T 2 1
Reg < O($(T.m*)3(K.dm*)3(|og(§)>

Thus, the algorithm provides a regret which scales sublinearly with T and
depends on the size of the "optimal” model class m* instead of m.
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Estimation of "gaps” between model classes

Loss function gap A ;

@ The loss function corresponding to a policy 7 is defined as the
expected loss on choosing policy 7 i.e. L(7) = E( x)~p[/(7(x))]

@ The loss function gap between model classes [1; and I1; is
Ajj = L7 — L where L7 denotes the optimal loss function in model
class M; namely L7 = min;¢cn, L(7).

@ Also note that /,j > m* would imply that A(/,j) =0

@ The function Estimate Residual(i,j) in [4] estimates this gap between
model classes I1; and I1; with high probability using the idea of square
loss gap predictors..

As, we shall discuss later that this gap is of paramount importance in the
design of the algorithm described below.
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|dea of the algorithm proposed in [ ]

@ The algorithm maintains an active index class starting from index
m=1.

@ At each round, the algorithm runs a variant of the EXP algorithm
namely EXP-IX algorithm on model class [, to decide to pull which
arm. This was originally described in [3] which was used for obtaining
high probability regret bounds for contextual bandits with a finite
policy class.

@ At each round the algorithm computes Estimate Residual(m, m)
vYm > .

@ We update m to model class m only when the above evaluation
crosses some pre-defined threshold i.e. we are sure that the optimal
policy does not belong in 4.
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Problem 1 : Pure Exploration under a given horizon T

We now modify the algorithm described in [4] to the pure exploration
framework where we aim to identify the optimal model class m* with the
lowest probability of error. We make two major changes in the algorithm.
@ Instead of running EXP-IX as described above in every round, we pull
the arms uniformly at random.
@ We now evaluate the function Estimate Residual(i,j) at the end of all
T rounds of the algorithm without changing the criterion for shifting
from one model class to another.

Intuition

@ We know typically that pure exploration strategies have much lower
probability of error in identifying the best arm than the regret
minimisation algorithms like EXP/UCB for stochastic non-contextual
bandits.

@ Also, we run the estimate residual algorithm at the end as we have

much more samples to estimate the gap (between model classes)
more accurately.
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Simulation results

We simulate our modified and the original algorithm where the dimension
of the model classes are given by 2,4,8,16,32,64,128,256,512 and 1000.

Also for the optimal regression function *, only the top- s coefficients of
£* can be non-zero.
Note that the optimal model class m* in this case is given by [log,(s)]

k| s o | Prob. mod. alg.(rounds) | Prob. orig. algorithm (rounds)
2115 | 0 1(6000) 0(8000)

5|15 | 0 1(6000) 0(10000)

5| 15 | 04 0.5(7000) 0(8000)

21 24 | 0 1(6000) 0.05 (8000)

5| 83 | 0.15 1(15000) 0(15000)

5| 100 | 0.25 0.75(20000) 0(20000)

5100 0 1(10000) 0.2(20000)

Table: Empirical probability of correctness under original and modified algorithm
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Simulation description and conclusion

@ For estimating the probability of the algorithm detecting the model
class m* correctly, we perform multiple simulations. We divide the
number of correct predictions with the total number of simulations to
get the empirical estimate.

@ Note that the last two columns in Tab. 1 denote the empirical
probability under our modified algorithm and the original proposed
algorithm respectively. Rounds basically denote the number of rounds
for which each algorithm was run for.

@ Clearly our modified algorithm estimates the correct model class with
a far lower probability of error.

21/28



How does our algorithm perform in regret minimisation?

@ Traditionally, algorithms which minimise the probability of error in
identifying the best arm perform pretty badly in regret minimisation
as it explores the sub-optimal arms too often.

@ Interestingly, a similar thing can be said in the case of contextual
bandits as well where the algorithm which identifies the best model
class accurately performs poorly in regret minimisation (gives almost
linear regret).

@ However, the algorithm proposed in [4] performs much better in
regret minimisation with sub-linear regret as discussed earlier.
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Simulation results of regret for our algorithm
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Simulation results of regret for our algorithm
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Problem 2: Regret minimisation under a fixed budget and

diff. arm cost

@ Under this model, the cost of pulling each arm a may be different
(denoted by c¢;) and we are allocated a fixed cost budget S which we

have to consume entirely.
@ The aim in this setup is to design an algorithm which minimises the
cumulative loss incurred till the entire cost budget is utilised.
@ Note that under this set up, there is no restriction on the total
number of pulls Ton the arms that an algorithm can make.
However, note that the assumptions on the loss functions /; and contexts
X remain the same.
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Reference arm chosen for regret

@ We believe that an optimal algorithm which has aprioiri knowledge of
all the loss functions would pull the arm a which minimises w
for every context x and thus we choose it as the reference arm.

o Mathematically, we write it as

a

-
Regret(S) =Y _(l(ar) — (7" (xt))) (1)

t=1

where 7*(x) = arg min fx2) 5nd Z c = S.
acA ©

Change in the proposed algorithm in [ ]

We follow the algorithm mod-CB [4] after replacing ¢m(x, a) by ¢(:a’a).

We simulate our algorithm and compare with the original algorithm in the
above setting in the upcoming slides. Note that we choose the costs of
arms as [0.3, 0.7,1.5,2.6,8.9,9.7,7.8,3.5,4.0,5.3].
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Simulation results
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