Approximately Optimal Arm Identification

Sahasrajit Sarmasarkar Divyam Bapna Adwait Godbole

Group 10

October 2019

Group 10

Approximately Optimal Arm Identification

October 2019 1 / 19

A Multi Armed Bandit instance with *n* Bernoulli bandits. The reward probabilities are p_i , where WLOG $p_1 \ge p_2 \ge \cdots \ge p_n$.

A Multi Armed Bandit instance with *n* Bernoulli bandits. The reward probabilities are p_i , where WLOG $p_1 \ge p_2 \ge \cdots \ge p_n$.

 (ϵ, m) -optimal arm

An arm j is said to be ϵ , *m*-optimal if $p_m - p_j \leq \epsilon$.

A Multi Armed Bandit instance with *n* Bernoulli bandits. The reward probabilities are p_i , where WLOG $p_1 \ge p_2 \ge \cdots \ge p_n$.

(ϵ, m) -optimal arm

An arm *j* is said to be ϵ , *m*-optimal if $p_m - p_j \leq \epsilon$.

Intuitively, ϵ is the tolerance in returning sub-optimal arms

Given a bandit instance, the objective is to return a set of m, (ϵ, m) -optimal arms.

Considering the PAC framework, we want an algorithm that, with probability at least $1 - \delta$, terminates and returns *m* such arms.

Webpage Advertisement Problem

A website owner has n options of advertisements but can only put up an m sized subset. His objective is to identify the m most likely to bring in more revenue.

Assumption: Viewership is roughly constant.

 \Rightarrow In this scenario, we model the quantized up-time as pulls and clicks as reward 1.

Kalyanakrishnan, et. al. in [2] suggest some approaches towards algorithms for this problem.

The intuitive idea is that if an arm is sampled sufficiently large number of times, the confidence bounds on that arm is sufficiently tight and hence, with large probability (ϵ, m) -optimal arms will be returned.

We will briefly look at these.

Preliminary Approaches

Direct Algorithm

Each arm is sampled a sufficiently large number of times - $O(\frac{2}{\epsilon^2} \log(\frac{n}{\delta}))$ times. Then the empirically the best *m* arms are selected.

Direct Algorithm

Each arm is sampled a sufficiently large number of times - $O(\frac{2}{\epsilon^2} \log(\frac{n}{\delta}))$ times. Then the empirically the best *m* arms are selected.

Incremental Algorithm

One by one select $(\epsilon, 1)$ -optimal arms *m*-times and accumulate them into a set, which is returned. This has complexity $O(\frac{mn}{\epsilon^2} \log(\frac{m}{\delta}))$

Direct Algorithm

Each arm is sampled a sufficiently large number of times - $O(\frac{2}{\epsilon^2} \log(\frac{n}{\delta}))$ times. Then the empirically the best *m* arms are selected.

Incremental Algorithm

One by one select $(\epsilon, 1)$ -optimal arms *m*-times and accumulate them into a set, which is returned. This has complexity $O(\frac{mn}{\epsilon^2} \log(\frac{m}{\delta}))$

Halving Algorithm

The main idea of Halving is to perform binary search on the sequence of arms. This brings down sample to $O(\frac{m}{\epsilon^2}\log(\frac{m}{\delta}))$.

A D F A B F A B F A B

Sampling Strategy

At every pull, we maintain the sets of 'top' (m) and 'bottom' (n - m) arms. The paper discusses a greedy sampling strategy which is quite intuitive. According to this, we sample the arms which are more likely to have been misclassified.

Sampling Strategy

At every pull, we maintain the sets of 'top' (m) and 'bottom' (n - m) arms. The paper discusses a greedy sampling strategy which is quite intuitive. According to this, we sample the arms which are more likely to have been misclassified.

selectArms

$$\begin{aligned} h^t_* &= \operatorname*{argmin}_{h \in Top^t} \{ \hat{p}^t_h - \beta(u_h, t) \} \\ l^t_* &= \operatorname*{argmax}_{l \in Bottom^t} \{ \hat{p}^t_l + \beta(u_l, t) \} \end{aligned}$$

Sampling Strategy

At every pull, we maintain the sets of 'top' (m) and 'bottom' (n - m) arms. The paper discusses a greedy sampling strategy which is quite intuitive. According to this, we sample the arms which are more likely to have been misclassified.

selectArms

$$h_*^t = \underset{h \in Top^t}{\operatorname{argmin}} \{ \hat{\rho}_h^t - \beta(u_h, t) \}$$
$$l_*^t = \underset{l \in Bottom^t}{\operatorname{argmax}} \{ \hat{\rho}_l^t + \beta(u_l, t) \}$$

Here $\beta(u, t)$ is a function of the number of pulls u and total pulls t.

$$\beta(u,t) = \sqrt{rac{1}{2u}\log(rac{k_1nt^4}{\delta})},$$
 where $k_1 = rac{5}{4}$

Stopping Criteria

After sufficient number of pulls, if the algorithm has gained at least $1 - \delta$ confidence over the correctness of the 'top' set, it stops.

→ < ∃ →</p>

Stopping Criteria

After sufficient number of pulls, if the algorithm has gained at least $1 - \delta$ confidence over the correctness of the 'top' set, it stops.

This is captured by the inequality:

$\begin{aligned} \texttt{shouldStop} \\ \{ \hat{p}_{l^t_*}^t + \beta(u_{l^t_*}^t, t) \} &- \{ \hat{p}_{h^t_*}^t - \beta(u_{h^t_*}^t, t) \} < \epsilon \end{aligned}$

Stopping Criteria

After sufficient number of pulls, if the algorithm has gained at least $1 - \delta$ confidence over the correctness of the 'top' set, it stops.

This is captured by the inequality:

shouldStop $\{\hat{p}_{l^t_*}^t+eta(u_{l^t_*}^t,t)\}$ - $\{\hat{p}_{h^t_*}^t$ - $eta(u_{h^t_*}^t,t)\}<\epsilon$

The sample complexity of this algorithm is $\mathcal{O}(H^{\epsilon/2}\log(\frac{H^{\epsilon/2}}{\delta}))$, where $H^{\epsilon/2} = \sum_{a \in arms} \frac{1}{[\Delta_a \vee \frac{\epsilon}{2}]^2}$.

▲ □ ▶ ▲ □ ▶ ▲ □

We worked on the theorems in (Kalyanakrishnan, et. al. 2012 [3]) to improve the bounds and came up with the following strategy.

We worked on the theorems in (Kalyanakrishnan, et. al. 2012 [3]) to improve the bounds and came up with the following strategy.

• We select a *t*₀ before which the algorithm would never stop even if the previously mentioned inequality is satisfied.

We worked on the theorems in (Kalyanakrishnan, et. al. 2012 [3]) to improve the bounds and came up with the following strategy.

- We select a *t*₀ before which the algorithm would never stop even if the previously mentioned inequality is satisfied.
- We replace δ in the expression of $\beta(u, t)$ by $\tilde{\delta}$.

We worked on the theorems in (Kalyanakrishnan, et. al. 2012 [3]) to improve the bounds and came up with the following strategy.

- We select a *t*₀ before which the algorithm would never stop even if the previously mentioned inequality is satisfied.
- We replace δ in the expression of $\beta(u, t)$ by $\tilde{\delta}$.

 $\tilde{\delta}$ should thus be the largest possible value that still would give the PAC guarantees. Intuitively, this will reduce $\beta(u, t)$ and hence number of the runs.

The conditions which the variables should satisfy have been described below.

- $4 \cdot \tilde{\delta} \leq \cdot (146 \cdot n \cdot \log(\frac{n}{\delta}))^2$
- $\sum_{i=1}^{\infty} \frac{1}{i^3} \ge \left(\sum_{i=t_0}^{\infty} \frac{1}{i^3}\right) \cdot \frac{\tilde{\delta}}{\delta}$

We choose the maximum $\tilde{\delta}$ and minimum t_0 satisfying the above inequalities.

We can argue theoretically¹ that on the modifications mentioned above we can achieve the required confidence as required for the PAC algorithm with much smaller number of runs.

Results

We ran LUCB1 (original) and LUCB2 (modified) for several bandit instances. Two of those instances are given below:

1 b1 = [0.9, 0.8, 0.7, 0.6, 0.595, 0.592, 0.3, 0.2, 0.1] 2 b5 = [0.9, 0.8, 0.795, 0.655, 0.6224, 0.61, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1]

Figura: Sample complexity for m = 4, $\delta = 0,1$ over b1 and b5

Group 10

Results

Here are some more instances with varied means and number of arms. In every case m = 4, $\delta = 0,1$.

Plot for different bandit instances with subset size = 4

Figura: Sample complexity

Approximately Optimal Arm Identification

In [1], Cao et. al. consider a similar setting where m arms are to be chosen with a different notion of ϵ -closeness.

In [1], Cao et. al. consider a similar setting where m arms are to be chosen with a different notion of ϵ -closeness.

Objective

Given parameters ϵ and δ , we want to select an *m*-sized subset of arms, V, such that with probability at least $1 - \delta$, $p_i^V \ge (1 - \epsilon)p_i^{true}$.

In [1], Cao et. al. consider a similar setting where m arms are to be chosen with a different notion of ϵ -closeness.

Objective

Given parameters ϵ and δ , we want to select an *m*-sized subset of arms, V, such that with probability at least $1 - \delta$, $p_i^V \ge (1 - \epsilon)p_i^{true}$.

The main distinction is that here the tolerance is relative (proportional to true reward probability) rather than absolute.

Second Look at Halving [2]

1:
$$R_1 \leftarrow T_n$$
.
2: $\epsilon_1 \leftarrow \frac{\epsilon}{4}; \delta_1 \leftarrow \frac{\delta}{2}$.
3: for $l = 1$ to $\lceil log(\frac{n}{m}) \rceil$ do
4: for all $a \in R_l$ do
5: Sample arm $a \lceil \frac{2}{\epsilon_l^2} ln(\frac{3m}{\delta_l}) \rceil$ times; let \hat{p}_a be its average reward.
6: end for
7: Find $R'_l \subset R_l$ such that $|R'_l| = \max(\lceil \frac{|R_l|}{2} \rceil, m)$, and $\forall i \in R_l \ \forall j \in (R_l - R'_l)$: $(\hat{p}_i \ge \hat{p}_j)$.
8: $R_{l+1} \leftarrow R'_l$.
9: $\epsilon_{l+1} \leftarrow \frac{3}{4} \epsilon_l; \ \delta_{l+1} \leftarrow \frac{1}{2} \delta_l$.
10: end for
11: Return $R_{\lceil log(\frac{n}{m}) \rceil + 1}$.

Figura: Halving Algorithm

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Adapting for Multiplicative Tolerance

Algorithm 1: ME-AS

$$\begin{array}{l} \mathbf{i} \text{ input: } B, \epsilon, \delta, k \\ \mathbf{2} \text{ for } \mu = 1/2, 1/4, \dots \mathbf{do} \\ \mathbf{3} & \left[\begin{array}{c} S = \mathbf{ME}(B, \epsilon, \delta, \mu, k); \\ \{(a_i, \hat{\theta}^{US}(a_i)) \mid 1 \leq i \leq k\} = \mathbf{US}(S, \epsilon, \delta, (1 - \epsilon/2)\mu, k); \\ \mathbf{5} & \text{ if } \hat{\theta}^{US}(a_k) \geq 2\mu \text{ then} \\ \mathbf{6} & \left[\begin{array}{c} \mathbf{return} \{a_1, \dots, a_k\}; \end{array} \right] \end{array} \right. \end{array}$$

Algorithm 2: Median Elimination (ME)

 $\begin{array}{l} \mathbf{i} \ \mathbf{nput:} \ B, \epsilon, \delta, \mu, k \\ \mathbf{2} \ S_1 = B, \epsilon_1 = \epsilon/16, \delta_1 = \delta/8, \mu_1 = \mu, \text{ and } \ell = 1; \\ \mathbf{3} \ \mathbf{while} \ |S_\ell| > 4k \ \mathbf{do} \\ \mathbf{4} \\ \mathbf{3} \ \text{sample every arm } a \in S_\ell \ \text{for } Q_\ell = (12/\epsilon_\ell^2)(1/\mu_\ell) \log(6k/\delta_\ell) \ \text{times}; \\ \mathbf{5} \\ \mathbf{6} \\ \mathbf{6} \\ \mathbf{6} \\ \mathbf{6} \\ \mathbf{6} \\ \mathbf{1} \ \text{is empirical value } \hat{\theta}(a) = \text{the average of the } Q_\ell \ \text{samples from } a; \\ \mathbf{7} \\ a_1, \dots, a_{|S_\ell|} = \text{the arms sorted in non-increasing order of their empirical values}; \\ \mathbf{8} \\ \mathbf{8} \\ S_{\ell+1} = \{a_1, \dots, a_{|S_\ell|/2}\}; \\ \mathbf{9} \\ \mathbf{6} \\ \epsilon_{\ell+1} = 3\epsilon_\ell/4, \delta_{\ell+1} = \delta_\ell/2, \mu_{\ell+1} = (1 - \epsilon_\ell)\mu_\ell, \ \text{and } \ell = \ell + 1; \\ \mathbf{10} \ \mathbf{return} \ S_\ell; \end{array}$

Figura: Guess and Validate Mechanism

Group 10

Approximately Optimal Arm Identification

・ 何 ト ・ ヨ ト ・ ヨ ト

For this variant, they propose a halving based algorithm with sample complexity $O(\frac{n}{\epsilon^2} \frac{1}{p_k^{true}} \log \frac{m}{\delta})$

Can we have an improvement over this by proposing a greedy strategy similar to LUCB?

- CAO, W., LI, J., TAO, Y., AND LI, Z. On top-k selection in multi-armed bandits and hidden bipartite graphs. In *Advances in Neural Information Processing Systems* (2015), pp. 1036–1044.
- [2] KALYANAKRISHNAN, S., AND STONE, P. Efficient selection of multiple bandit arms: Theory and practice. In *Proceedings of the Twenty-seventh International Conference on Machine Learning (ICML* 2010) (2010), J. Fürnkranz and T. Joachims, Eds., Omnipress, pp. 511–518.
- [3] KALYANAKRISHNAN, S., TEWARI, A., AUER, P., AND STONE, P. PAC subset selection in stochastic multi-armed bandits. In *Proceedings* of the Twenty-ninth International Conference on Machine Learning (ICML 2012) (New York, NY, USA, 2012), J. Langford and J. Pineau, Eds., Omnipress, pp. 655–662.

• • • • • • • • • • • •