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The Setting

A Multi Armed Bandit instance with n Bernoulli bandits. The reward
probabilities are pi , where WLOG p1 ≥ p2 ≥ · · · ≥ pn.

(ε,m)-optimal arm

An arm j is said to be ε,m-optimal if pm − pj ≤ ε.

Intuitively, ε is the tolerance in returning sub-optimal arms
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Problem Statement

Given a bandit instance, the objective is to return a set of m,
(ε,m)-optimal arms.

Considering the PAC framework, we want an algorithm that, with
probability atleast 1− δ, terminates and returns m such arms.
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Applications

Webpage Advertisement Problem
A website owner has n options of advertisements but can only put up an
m sized subset. His objective is to identify the m most likely to bring in
more revenue.
Assumption: Viewership is roughly constant.
⇒ In this scenario, we model the quantized up-time as pulls and clicks as
reward 1.
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Preliminary Approaches

Kalyanakrishnan, et. al. in [2] suggest some approaches towards algorithms
for this problem.

The intuitive idea is that if an arm is sampled sufficiently large number of
times, the confidence bounds on that arm is sufficiently tight and hence,
with large probability (ε,m)-optimal arms will be returned.

We will briefly look at these.
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Preliminary Approaches

Direct Algorithm

Each arm is sampled a sufficiently large number of times - O( 2
ε2 log(nδ ))

times. Then the empirically the best m arms are selected.

Incremental Algorithm

One by one select (ε, 1)-optimal arms m-times and accumulate them into
a set, which is returned. This has complexity O(mn

ε2 log(mδ ))

Halving Algorithm

The main idea of Halving is to perform binary search on the sequence of
arms. This brings down sample to O(m

ε2 log(mδ )).
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General Algorithmic Framework

Algorithm 1: A general algorithm

Result: m (ε,m)-optimal arms
initialize history ;
while !shouldStop(history) do

selectedArms =
selectArms(history) ;
result =
sample(selectedArms) ;
update(history, result) ;

end
return topK(history)

Group 10 Approximately Optimal Arm Identification October 2019 7 / 19



LUCB1

Sampling Strategy
At every pull, we maintain the sets of ‘top’ (m) and ‘bottom’ (n −m)
arms. The paper discusses a greedy sampling strategy which is quite
intuitive. According to this, we sample the arms which are more likely to
have been misclassified.

selectArms

ht∗ = argmin
h∈Topt

{p̂th − β(uh, t)}

l t∗ = argmax
l∈Bottomt

{p̂tl + β(ul , t)}

Here β(u, t) is a function of the number of pulls u and total pulls t.

β(u, t) =
√

1
2u log(k1nt4

δ ), where k1 = 5
4
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LUCB1

Stopping Criteria
After sufficient number of pulls, if the algorithm has gained at least 1− δ
confidence over the correctness of the ‘top’ set, it stops.

This is captured by the inequality:

shouldStop

{p̂tl t∗ + β(utl t∗ , t)} - {p̂tht∗ - β(utht∗ , t)} < ε

The sample complexity of this algorithm is O(Hε/2log(H
ε/2

δ )), where

Hε/2 =
∑

a∈arms
1

[∆a∨ ε2 ]2 .
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LUCB2 (Modified LUCB1)

What have we done?
We worked on the theorems in (Kalyanakrishnan, et. al. 2012 [3]) to
improve the bounds and came up with the following strategy.

We select a t0 before which the algorithm would never stop even if
the previously mentioned inequality is satisfied.

We replace δ in the expression of β(u, t) by δ̃.

δ̃ should thus be the largest possible value that still would give the PAC
guarantees. Intuitively, this will reduce β(u, t) and hence number of the
runs.
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LUCB2 (Modified LUCB1)

The conditions which the variables should satisfy have been described
below.

4 · δ̃ ≤ ·(146 · n · log(nδ ))2∑∞
i=1

1
i3
≥ (

∑∞
i=t0

1
i3

) · δ̃δ
We choose the maximum δ̃ and minimum t0 satisfying the above
inequalities.
We can argue theoretically1 that on the modifications mentioned above we
can achieve the required confidence as required for the PAC algorithm with
much smaller number of runs.

1Detailed reasoning and mathematical argument for the same would be provided in
the report
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Results

We ran LUCB1 (original) and LUCB2 (modified) for several bandit
instances. Two of those instances are given below:

1 b1 = [0.9, 0.8, 0.7, 0.6, 0.595, 0.592, 0.3, 0.2, 0.1]

2 b5 = [0.9, 0.8, 0.795, 0.655, 0.6224 , 0.61, 0.6, 0.5, 0.4,

0.3, 0.2, 0.1]

Figura: Sample complexity for m = 4, δ = 0,1 over b1 and b5
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Results

Here are some more instances with varied means and number of arms. In
every case m = 4, δ = 0,1.

Figura: Sample complexity
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An alternative notion of ε-closeness

In [1], Cao et. al. consider a similar setting where m arms are to be chosen
with a different notion of ε-closeness.

Objective

Given parameters ε and δ, we want to select an m-sized subset of arms, V,
such that with probability at least 1− δ, pVi ≥ (1− ε)ptruei .

The main distinction is that here the tolerance is relative (proportio-
nal to true reward probability) rather than absolute.
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Second Look at Halving [2]

Figura: Halving Algorithm
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Adapting for Multiplicative Tolerance

Figura: Guess and Validate Mechanism
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More ideas

For this variant, they propose a halving based algorithm with sample
complexity O( n

ε2
1

ptruek
log m

δ )

Can we have an improvement over this by proposing a greedy strategy
similar to LUCB?
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Thank You
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